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Blind Receivers based on Tensor Decompositions.
Application in DS-CDMA and over-sampled

systems.
Dimitri Nion and Lieven De Lathauwer

Abstract— In this paper, we propose a survey on Blind Receivers
based on Tensor Decompositions in Block Components. In the
uplink, if the receiver is equipped with an antenna array, the
spatial, temporal and CDMA code or over-sampling diversities
allow to model the chip-rate sampled received signal as a third-
order tensor. Each user’s contribution is then blindly estimated
by decomposition of this tensor of observations. As we will
show, different propagation scenarios require different tensor
decompositions. We will then briefly address the algorithmic
aspect to compute these tensor decompositions.

I. I NTRODUCTION

Let us considerR users transmitting with a single antenna, at
the same time within the same bandwidth, frames ofJ symbols
towards an array ofK antennas with unknown geometry.
The channel is supposed to be stationary over the interval of
durationJ.Ts, whereTs is the symbol-period. We denote by
sr = [s1rs2r . . . sJr], the symbol sequence of userr. From the
observations given by the antenna array, we wish to estimate
each user’s symbol sequence in a blind way, i.e., we do not use
training sequences.

If we over-sample the signal received by each antenna by a
factor I, i.e., we collectI samples within each symbol period,
we finally get a set ofIJK samples that can be arranged in
a third-order tensorY ∈ CI×J×K . Each dimension of this
observation tensor corresponds to an available diversity.The
blind problem is then solved by the decomposition ofY as

Y =

R∑

r=1

Yr, (1)
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whereYr ∈ CI×J×K fully characterizes the global contribution
of userr.

The models of this paper work both for DS-CDMA and
over-sampled systems. We do not assume knowledge of the
spreading codes or pulse shape filters, not even for a user of
interest. The deterministic blind receivers we propose rather
exploit the algebraic structure ofY. However, this structure
is not the same according to the propagation scenario. For
instance, the PARAFAC decomposition ofY is the solution in a
single-path scenario, while Block-Component-Decompositions
(BCD) are needed for more complex channels.

In Section 2, we derive the analytic expression for the trans-
mitted signal in CDMA and over-sampled systems. In Section
3, we associate a specific tensor decomposition to the received
signal for each of the three propagation scenarios under consid-
eration. In Section 4, we give references to several algorithms
that can be used to compute the decompositions.

II. T RANSMITTED SIGNALS

A. DS-CDMA system

We denote byI the spreading factor, i.e.,Ts = I.Tc, whereTc

is the chip period. The spreading waveformer(t) of userr is
built by modulation of his spreading sequencecr = [c1r . . . cIr]
by a pulse-shape (raised-cosine) filtergr,Tc

(t):

er(t) =

I∑

i=1

gr,Tc
(t − iTc)cir .

Note that gr,Tc
(t) is indexed byr since the technique we

propose does not require the same pulse-shape filter for each
user. The indexTc means that the width of the main lobe of
this filter is2Tc. The baseband signalxr(t) transmitted by user
r is:

xr(t) =

J∑

j=1

sjrer(t − jTs)

=
J∑

j=1

sjr

I∑

i=1

gr,Tc
(t − iTc − jTs)cir. (2)



2

B. Over-sampled system

In this system,sr is directly modulated (without code spread-
ing) by a pulse-shape filtergr,Ts

(t) defined at the symbol rate.
The baseband signalxr(t) transmitted by userr is

xr(t) =

J∑

j=1

sjrgr,Ts
(t − jTs). (3)

In this system, an extra diversity will be created by temporally
over-sampling the received signals. In this case,I does not
stand for the spreading factor as in CDMA, but is called the
over-sampling factor. We will however keep the same notation:
Ts = I.Tc.

III. A NALYTIC AND ALGEBRAIC MODELS FOR RECEIVED

SIGNALS

In this section, we consider three propagation scenarios and
for each scenario, we associate the analytic expression forthe
received signal to its algebraic equivalent.

A. Memoryless Channel

1) Analytic Model:We suppose that each of the signalsxr(t),
r = 1 . . . R are received via a single path characterized by
a fading-factorβr, an angle of arrivalθr and a delayτr

that holds propagation delay and asynchronism. The baseband
signalyk(t) received by antennak is:

yk(t) =

R∑

r=1

βrak(θr)xr(t − τr), (4)

whereak(θr) is the response of antennak to the angleθr.

For both CDMA and over-sampled systems, the sampleyijk of
yk(t) at sampling instantt = (jI + i)Tc, can be written as:

yijk =

R∑

r=1

akrsjrhir, (5)

where akr = ak(θr). For a DS-CDMA system,hir =
βrcirgr,Tc

(t − iTc − jTs − τr) |t=iTc+jTs
is the sample of

the global channel at instantt = (jI + i)Tc. Note that if
τr = 0, then hir = βrcir . For an over-sampled system,
hir = βrgr,Ts

(t − jTs − τr) |t=iTc+jTs
.

2) Algebraic Model: PARAFAC:Sidiropoulos, Giannakis and
Bro were the first to use a multilinear algebra point of vue in
wireless communications in 2000. In fact, they have shown that
the analytic model of Eq. (5) is a PARAFAC decomposition of
the tensor of observationsY ∈ CI×J×K holding the entries
yijk [1].

Parallel Factor Analysis (PARAFAC) was introduced in [2],
[3] and reintroduced in [4], [5]. It is a powerful technique to

I

K

J

+ ... +=Y
h1 hR

s1 sR

a1 aR

Fig. 1. Schematic representation of the PARAFAC decomposition

decompose a rank-R tensor in a linear combination ofR rank-
1 tensors. Algebraically, the PARAFAC decomposition ofY is
written as

Y =
R∑

r=1

hr ◦ sr ◦ ar, (6)

wherehr ∈ CI , sr ∈ CJ andar ∈ CK hold the sampleshir,
sir and air , respectively, and◦ is the outer product [6]. This
trilinear decomposition is visualized in Fig. 1.

B. Far-Field reflections

We now consider a multipath propagation scenario where the
reflectors are only located in the far-field, from the receiver
point of vue. This assumption means that the angular spread
between all paths incoming from the same user is negligi-
ble. However, the delay spread is such that Inter-Symbol-
Interference (ISI) might occur.

1) Analytic Model: For userr, we denote byhr(t) the global
Channel Impulse Response.

- For CDMA systems,hr(t) results from convolution between
the (finite) impulse response of the effective propagation chan-
nel and the spreading waveformer(t).

- For over-sampled systems,hr(t) results from convolution of
the same impulse response by the pulse-shape filtergr,Ts

(t).

Let LrTs be the duration ofhr(t), meaning that ISI occurs on
Lr consecutive symbols. The sampleyijk of the signal received
by antennak at chip instant(jI + i)Tc can be written as:

yijk =
R∑

r=1

ak(θr)

Lr∑

l=1

hr(i + (l − 1)I)sj−l+1,r , (7)

whereak(θr) is the response of antennak to the (mean) angle
of arrival θr, and wherehr(i+(l−1)I) is the sample ofhr(t)
at instant(i + (l − 1)I)Tc.

2) Algebraic Model: BCD-(Lr,Lr,1): The analytic model of
Eq. (7) can equivalently be written as the Block Component
Decomposition ofY in rank-(Lr,Lr,1) terms [7]–[11]. This de-
composition, referred to as BCD-(Lr,Lr,1), is a generalization
of PARAFAC in the sense that each contributionYr now results
from two rank-Lr matricesHr ∈ CI×Lr andSr ∈ CJ×Lr , and
from one vectorar ∈ CK×1, such that

Y =

R∑

r=1

(Hr · S
T
r ) ◦ ar. (8)
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Fig. 2. Representation of the BCD-(Lr ,Lr ,1) with Toeplitz structure onSr

Hr holds samples of the global channel, i.e.,[Hr]i,l = hr(i +
(l−1)). Sr has a Toeplitz structure and holds the symbols trans-
mitted with ISI,[Sr]j,l = sj−l+1,r . As for PARAFAC,ar holds
the coefficientsak(θr). Fig. 2 is a schematic representation of
the BCD-(Lr,Lr,1) terms.

C. Specular Multipath Channel

We now consider a specular multipath channel, where we
associatePr different paths to userr. The pth path of user
r is characterized by the triplet (βp,r, θp,r, τp,r), whereβp,r

is the fading factor,θp,r is the angle of arrival andτp,r is the
delay.

1) Analytic Model: For both DS-CDMA and over-sampled
system, the response of the global channel between userr and
antennak can now be written as:

hk,r(t) =

Pr∑

p=1

βp,rak(θp,r)wr(t − τp,r),

wherewr(t−τp,r) = er(t−τp,r) for CDMA andwr(t−τp,r) =
gr,Ts

(t−τp,r) for an over-sampled system. LetLr be the length
of this global channel impulse response. For both DS-CDMA
and over-sampled system,yijk can then be written as

yijk =

R∑

r=1

Pr∑

p=1

βp,rak(θp,r)

Lr∑

l=1

wp,r(i+(l−1)I)sj−l+1,r, (9)

wherewp,r(i+(l−1)I) is the sample ofwr(t−τp,r) at instant
t = (i + (l − 1)I)Tc.

2) Algebraic Model: BCD-(Lr,Pr,.): The analytic model of
Eq. (9) can equivalently be written as the Block Component
Decomposition ofY in rank-(Lr,Pr,.) terms [7]–[9], [12].
This decomposition, referred to as BCD-(Lr,Pr,.), generalizes
both PARAFAC and BCD-(Lr,Lr,.). Each contributionYr now
results from a rank-Lr Toeplitz matrix Sr ∈ CJ×Lr , with
[Sr]j,l = sj−l+1,r, that holds the symbols, a rank-Pr matrix
Ar ∈ CK×Pr , with [Ar]k,p = ak(θp,r), that holds the response
of the K antennas to thePr paths, and from a tensorHr ∈
CI×Lr×Pr , with [Hr]i,l,p = wp,r(i + (l − 1)I), that holds the
coefficients of the global channel. The BCD-(Lr,Pr,.) is defined
by
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Fig. 3. Representation of the BCD-(Lr ,Pr,.) with Toeplitz structure onSr

Y =

R∑

r=1

Hr •2 Sr •3 Ar, (10)

where•n is the mode-n product [6], [8]. Fig. 3 is a schematic
representation of the BCD-(Lr,Pr,.).

A similar but formally different tensor-based formulationfor
this problem is presented in [13], [14].

IV. A LGORITHMS

Computation of PARAFAC, BCD-(Lr,Lr,1) and BCD-
(Lr,Pr,.) relies on the estimation of three unknown matricesA,
S and H of which dimensions depend on the decomposition
under consideration.

For PARAFAC, H = [h1 . . .hR], S = [s1 . . . sR] and A =
[a1 . . .aR] have dimensions(I × R), (J × R) and (K × R),
respectively. Let us denotēL =

∑R

r=1
Lr, P̄ =

∑R

r=1
Pr and

M̄ =
∑R

r=1
LrPr.

For BCD-(Lr,Lr,1), H = [H1 . . .HR], S = [S1 . . .SR] and
A = [a1 . . .aR] have dimensions(I×L̄), (J×L̄) and(K×R),
respectively.

For BCD-(Lr,Pr,.), H = mat([H1 . . .HR]), S = [S1 . . .SR]
andA = [A1 . . .AR] have dimensions(I × M̄), (J × L̄) and
(K × P̄ ), respectively, wheremat is an operator that stacks all
entries of a tensor in a matrix.

In the application of this paper,S has a block-Toeplitz structure
in the two block-terms decompositions and one way to achieve
blind equalization within each user’s contribution is to preserve
this structure in all steps of the algorithms.

Several algorithms have been proposed in the literature to
compute tensor decompositions. The presentation in detailof
these algorithms is beyond the scope of this paper. However,
we shortly adress the principle of some of these algorithms and
give references where further details can be found.
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A. Alternating Least Squares

The "Alternating Least Squares" (ALS) algorithm is a well-
known technique to compute the PARAFAC decomposition
[15], [16] and it has been extended to the decomposition
of a tensor in Block Terms in [9]. This algorithm exploits
the multilinearity of the algebraic model to alternate between
conditional least-squares updates of the three unknown matrices
in each iteration. The way ALS can be adapted to preserve the
block-Toeplitz structure ofS within each iteration is described
in [10], [12]. The main drawback of ALS is its sensitivity to
ill-conditioned data and near-far effect, which are known to
produce swamps, i.e., many iterations with convergence speed
almost null, after which convergence resumes [17], [18]. One
way to reduce the length of swamps is to introduce a Line
Search step before each ALS iteration.

B. Line Search

In [4], [19], Line Search was proposed to speed up convergence
of ALS for PARAFAC. For a given iteration, this technique
consists of the linear interpolation of the three unknown matri-
ces from their previous estimates, after which the interpolated
matrices are used as inputs of the ALS update. The challenge of
Line Search is to find a “good” step size in the search directions
to speed up convergence. For real-valued tensors, an “Enhanced
Line Search” technique that calculates theoptimalstep size has
been proposed in [20], [21]. This method has been extended
to complex-valued tensors that follow PARAFAC or BCD in
[22]. As a result, the length of swamps is drastically reduced
at a negligible computational cost.

C. Levenberg-Marquardt

Another approach is the reformulation of the estimation prob-
lem as a classical optimization problem. In [23], a Levenberg-
Marquardt (LM) algorithm is proposed for PARAFAC and it
has been adapted to BCD in [24]. This algorithm is based
on the well-known Gauss-Newton curve fitting technique. In
contrast to ALS, the factors in the three modes are updated at
the same time. As a result, this algorithm provides quadratic
convergence in the final iterations and thus converges (much)
faster than ALS and ALS with Line Search. Moreover, it is well
adapted to separation of ill-conditioned data and small-power
contributions. However, the main drawback of this algorithm
is its computational cost that becomes prohibitive when the
data size increases. One way to overcome this drawback is to
perform a dimensionality reduction [25]–[27] ofY and then
calculate its decomposition in the compressed space.

D. Simultaneous Diagonalization

Under some conditions on the dimensions, PARAFAC can be
formulated as a problem of simultaneous diagonalization ofa

set of matrices [28], [29]. This results in a fast and reliable way
to compute this decomposition. Moreover, this reformulation
of PARAFAC involves a new bound for its uniqueness, which
is much more relaxed than the Kruskal bound [30]. If the
value ofLr is the same for each component, then the resulting
BCD-(L,L,1) can also be expressed in terms of simultaneous
diagonalization [11]. This approach also involves a new bound,
much more relaxed than the one derived in [8]. The analytic
expression for this new bound is being developed.

V. CONCLUSION

In this paper, we have shown how the blind multi-user
separation-equalization problem can be solved by the decom-
position of a third-order tensor, provided that the signalsare
received by an antenna array. This approach works both for
CDMA and over-sampled systems. It does not require knowl-
edge of antenna array geometry, neither of CDMA codes or
pulse shape filters. We have shown how different propagation
scenarios lead to different tensor decompositions. The latter
can be calculated by several specific algorithms that have been
proposed in the literature. Another important issue which is still
under intensive development concerns the uniqueness of Block
Component Decompositions.
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