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ABSTRACT

In this paper, we show that the Block Component De-

composition in rank-(L,L,1) terms of a third-order tensor,

referred to as BCD-(L,L,1), can be reformulated as a Joint

Block Diagonalization (JBD) problem, provided that certain

assumptions on the dimensions are satisfied. This JBD-

based reformulation leads to a new uniqueness bound for

the BCD-(L,L,1). We also propose a closed-form solution to

solve exact JBD problems. For approximate JBD problems,

this closed-form solution yields a good starting value for

iterative optimization algorithms. The performance of our

technique is illustrated by its application to blind CDMA

signal separation.

I. INTRODUCTION

Let us consider the exact Block Component Decompo-

sition (BCD) in rank-(L,L,1) terms of a third-order tensor

T ∈ C
I×J×K , introduced in [1]:

T =
R
X

r=1

(Ar ·B
T
r ) ◦ cr, (1)

where Ar ∈ C
I×L and Br ∈ C

J×L are rank-L, cr ∈ C
K ,

∀r ∈ {1, . . . , R}, ◦ is the outer product. The element-wise

version of (1) is

tijk =

R
X

r=1

ckr

L
X

l=1

[Ar]il[Br]jl. (2)

The well-known PARAFAC decomposition (see [2]–[5]

and references therein) corresponds to the special case of the

BCD-(L,L,1) where L = 1. Define the partitioned matrices

A = [A1 . . .AR] ∈ C
I×RL, B = [B1 . . .BR] ∈ C

J×RL, C =

[c1 . . . cR] ∈ C
K×R and denote by TIK×J the IK×J matrix

representation of T , such that [TIK×J ](i−1)K+k,j = tijk. The

BCD-(L,L,1) can equivalently be written as

TIK×J = (A⊙C) ·BT , (3)
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where ⊙ is the Khatri-Rao product, i.e., A ⊙ C = [A1 ⊗

c1, . . . ,AR ⊗ cR], where ⊗ is the Kronecker product. Com-

putation of the BCD-(L,L,1) of T consists of the estimation

of the unknown matrices A, B and C, which can be done by

an Alternating Least Squares (ALS) algorithm [6], possibly

coupled with Enhanced Line Search (ELS) to speed up

convergence [7], [8].

It is clear that in (1), one can arbitrarily permute the R

different rank-(L,L,1) tensors. Also, one can postmultiply

Ar by any nonsingular (L × L) matrix Fr, provided that

B
T
r is premultiplied by F

−1
r . Moreover, the factors of a

same rank-(L,L,1) term may be arbitrarily scaled, as long as

their product remains the same. We call the decomposition

essentially unique when it is only subject to these inde-

terminacies. In [1], sufficient generic conditions for which

essential uniqueness of the BCD-(L,L,1) is guaranteed have

been derived. We call a property generic when it holds

everywhere, except for a set of Lebesgue measure 0.

In [9], we studied the PARAFAC decomposition under the

constraint min(IJ,K) ≤ R, where the roles of I , J and K

can of course be interchanged. We showed that under some

conditions, its computation can be reformulated as a Joint

Diagonalization (JD) problem. The derivation yields a new

uniqueness bound that is more relaxed than the well-known

Kruskal bound [10], if the working conditions are satisfied.

In the same spirit as [9], the main motivation of this paper

is to work towards a reformulation of the BCD-(L,L,1) in

terms of joint diagonalization, and investigate the uniqueness

conditions resulting from this reformulation. In [11], we

have worked under the conditions min(IJ,K) ≥ R and we

have shown that in this case, the computation of the BCD-

(L,L,1) can, under some conditions, be reformulated as a

JD problem, which yields a uniqueness bound that is more

relaxed than the one in [1]. In this paper, we suppose that

the long dimension of T is J (or I , since the roles of A and

B can be interchanged), rather than K. Our assumptions are:

(A1) LR ≤ J and B has full column rank,

(A2) LR ≤ IK and A⊙C has full column rank.

Under the condition (A1), it has been shown in [1] that

essential uniqueness is generically guaranteed if

LR ≤ J and min(

—

I

L

�

, R) + min(K, R) ≥ R + 2. (4)
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Under (A1) and (A2), the main contributions of this paper

are the following:

i) we show that the computation of the BCD-(L,L,1) can

be reformulated as a Joint Block Diagonalization (JBD)

problem, even in the underdetermined case where LR > I;

ii) we propose a closed-form solution for the exact JBD

problem. For noisy JBD problems, this solution can be used

as a good starting point for existing optimization algorithms;

iii) the JBD reformulation leads to a new uniqueness

bound that is more relaxed than (4);

iv) we illustrate our results by means of an application in

CDMA.

II. LINK BETWEEN THE BCD-(L,L,1) AND JOINT

BLOCK DIAGONALIZATION

Under assumptions (A1) and (A2), it is clear from (3) that

TIK×J is of rank LR. Let us write the economy-size SVD

of TIK×J :

TIK×J = U ·Σ ·VH = E ·VH , (5)

where U ∈ C
IK×LR and V ∈ C

J×LR are column-wise

orthonormal and Σ ∈ C
LR×LR is diagonal. Combination of

(3) and (5) yields:

E = (A⊙C) ·W−1, (6)

B
T = W

−1 ·VH , (7)

in which W ∈ C
LR×LR is an a priori unknown nonsingular

matrix. From the indeterminacies of the BCD-(L,L,1), it

follows that W can only be determined up to right multipli-

cation with a block diagonal matrix involving nonsingular

L×L blocks. If we obtain an estimate of W, an estimate of

B follows from (7) and an estimate of A⊙C follows from

(6). To obtain A and C from A⊙C, we proceed as follows.

We first compute E ·W = [F1, . . . , FR], where Fr ∈ C
IK×L,

1 ≤ r ≤ R. Since Fr is an estimate of Ar⊗cr, we first stack

Fr in F̃r ∈ C
K×IL. Then, the best rank-1 approximation of

F̃r yields an estimate of cr and vec(AT
r ), 1 ≤ r ≤ R. Here,

vec(X) = [xT
1 ,xT

2 , . . . ,xT
N ]T is the vector in which all the

columns of X = [x1,x2, . . . ,xN ] are stacked.

The problem is now the estimation of the nonsingular

matrix W that links the matrix factorizations (6) and (7).

In the following, we show that this matrix can be obtained

by solving a JBD problem. We first need the following tool

for rank-1 detection.

Theorem 1. Consider the bilinear mapping

Φ : (X,Y) ∈ C
I×J × C

I×J 7→ Φ(X,Y) ∈ C
I×I×J×J

defined by:

(Φ(X,Y))i1i2j1j2 = xi1j1yi2j2 + yi1j1xi2j2

−xi1j2yi2j1 − yi1j2xi2j1 .

Then, we have Φ(X,X) = O if and only if X is at most

rank-1 [9], [12], where O is the zero tensor.

We consider the partitioning E = [E1, . . . ,ER], in which

Er ∈ C
IK×L. Let us compute, for all r, s ∈ [1, LR]:

Prs = Φ(Er,Es) (8)

=
LR
X

u,v=1

(W−1)ur(W
−1)vsΦ([A⊙C]:,u, [A ⊙C]:,v) ,

due to the bilinearity of Φ. We have used the MATLAB

notation [X]:,u to denote the uth column of X. We introduce

new indices α, β ∈ [1, R] and l, m ∈ [1, L] such that u =

(α− 1)L + l and v = (β − 1)L + m. Then we have:

Prs =

L
X

l,m=1

R
X

α,β=1

(W−1)(α−1)L+l,r(W
−1)(β−1)L+m,s

Φ
“

[Aα]:,lc
T
α , [Aβ]:,mc

T
β

”

. (9)

Now assume that there exists a symmetric matrix M ∈

C
LR×LR such that

LR
X

r,s=1

mrsPrs = O, (10)

(we will motivate this assumption below). Substitution of (9)

in (10) yields:

LR
X

r,s=1

L
X

l,m=1

R
X

α,β=1

(W−1)(α−1)L+l,r(W
−1)(β−1)L+m,s (11)

mrsΦ
“

[Aα]:,lc
T
α , [Aβ]:,mc

T
β

”

= O

From the definition of the mapping Φ, we have that

Φ
`

[Aα]:,lc
T
α , [Aβ]:,mc

T
β

´

= O if α = β, regardless of the

values of l and m. We now make the crucial assumption

that the L2C2
R = RL2(R−1)

2
tensors of the set

Ω = {Φ
“

[Aα]:,lc
T
α , [Aβ ]:,mc

T
β

”

,

1 6 α < β 6 R, 1 6 l, m 6 L}, (12)

are linearly independent. It follows that (11) is equivalent to

W
−1 ·M ·W−T = D, (13)

in which D is an LR × LR block diagonal matrix with

symmetric L× L blocks on its diagonal. Equivalently,

M = W ·D ·WT . (14)

It can be verified that any matrix M that has the structure

(14), satisfies (10). Hence, there are N = RL(L+1)
2

symmetric

matrices in the kernel of (10), which can all be decomposed

as in (14):

Mn = W ·Dn ·W
T , n = 1, . . . , N. (15)

Finally, an estimate of W is obtained by solving the JBD

problem (15). This can be done by existing algorithms for

non-unitary JBD, e.g., [13]. Alternatively, this can also be

done by the computation of the BCD-(L,L,·) [1] of the tensor

M ∈ C
LR×LR×N obtained by stacking the matrices Mn.

The latter decomposition can be computed by means of the
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algorithms proposed in [6], [8], [14]. In this paper, we will

solve the JBD problem via the computation of the BCD-

(L, L, ·) by means of an Alternating Least Squares algorithm

with Enhanced Line Search (ALS+ELS) [7], [8]. In the next

section, we propose a closed-form solution of the exact JBD

problem (15).

III. A CLOSED-FORM SOLUTION TO THE EXACT

JBD PROBLEM

Assume that N ≥ 3 and consider the partitioning W =

[W1, . . . ,WR], with Wr ∈ C
RL×L, r = 1, . . . , R. Assume

that (15) is exactly satisfied. For simplicity, we assume that

M2 is full rank. Then, we have:

M1 ·M
−1
2 = W · (D1 ·D

−1
2 ) ·W−1. (16)

This implies that the column space of Wr, r = 1, . . . , R, is an

invariant subspace of M1 ·M
−1
2 . We compute the Eigenvalue

Decomposition (EVD) of M1 ·M
−1
2 :

M1 ·M
−1
2 = E ·Λ · E−1 (17)

(or the generalized EVD of (M1,M2)). From (17), it is

unclear which eigenvectors have to be paired. Taking the

problem indeterminacies into account, we have that W can

be written as

W = E ·Π, (18)

whereΠ is an a priori unknown permutation matrix that pairs

the eigenvectors L by L. Estimation of Π can be achieved

by checking the permuted block-diagonal structure of the

matrices E
−1 ·Mn · E, 3 ≤ n ≤ N .

IV. UNIQUENESS OF THE BCD-(L,L,1)

Together with (A1) and (A2), the independence of the set

Ω forms a set of deterministic conditions under which es-

sential uniqueness of BCD-(L,L,1) is guaranteed. Moreover,

under these conditions, the solution can be found by JBD and

the noise-free solution is known explicitly. We now present

a generic formulation of these conditions. Generically, B has

full column rank if LR ≤ J . It can be shown that, generically,

A ⊙ C has full column rank if LR ≤ IK. The definition

of the mapping Φ implies that the tensors in Ω have only

C2
I C2

K = (1/4)I(I − 1)K(K − 1) distinct non-zero entries.

Hence, the tensors in Ω can be stacked in an (C2
I C2

K×L2C2
R)

matrix P and the question is whether P has rank L2C2
R.

We conjecture that this is generically the case as long as P

has at least as many rows as columns. Hence, we have the

following sufficient condition for generic uniqueness.

Conjecture. The BCD-(L,L,1) is generically essentially

unique if

LR ≤ min(IK,J) and C2
I C2

K ≥ L2C2
R. (19)

Note that for L = 1, i.e., for PARAFAC, this bound reduces

to the bound derived in [9]. Condition (19) is significantly

more relaxed than (4) if LR ≤ min(IK, J).

According to [15, Theorem 5.A.2], a set is generically

linearly independent if it is independent for one set of

parameters. Hence, for given values of I , J , K and L, the

conjecture can always be proved by checking the rank of

A⊙C and P for one random choice of A, B and C.

V. SIMULATION RESULTS

In this section, we apply our method to the blind sep-

aration of multi-user DS-CDMA signals. The channel is

convolutive but the multipath reflections occur only in the

far field of the receive antenna array. The parameters are

the following: I is the spreading factor, J the number of

transmitted symbols, K the number of receive antennas,

R the number of users and L the duration (in number of

symbol periods) of the channel impulse response of each

user. It has been shown in [11], [16], [17] that this signal

can be seen as an I × J ×K tensor T that admits a BCD-

(L,L,1), up to noise. Here, the J ×L matrix Br holds the J

symbols of user r and has a Toeplitz structure. The channel

impulse response coefficients are stacked in the I×L matrix

Ar. In this application, the second dimension J is naturally

the “long” dimension. We compare the performance of the

following algorithms:

M1. BCD-(L,L,1) computed by ALS+ELS [8] with one

random initialization, where the Toeplitz structure of the

matrices Br is enforced at each iteration (by updating the

Toeplitz generator vectors directly, as explained in [14]);

M2. BCD-(L,L,1) computed by ALS+ELS [8] with one

random initialization, where the Toeplitz structure of the

matrices Br is only recovered after convergence. The latter

is done by means of the subspace method in [18];

M3. BCD-(L,L,1) computed by JBD, initialized with the

closed-form solution, followed by M1 to refine the estimate;

M4. BCD-(L,L,1) computed by JBD, initialized with the

closed-form solution, followed by M2 to refine the estimate.

We have conducted experiments consisting of 200 Monte-

Carlo runs for each value of the Signal to Noise Ratio (SNR),

the latter varying from 0 dB to 40 dB. We have R = 5,

L = 2, K = 4, I = 8 and J = 30 BPSK symbols. In each

run, the matrices A and C are redrawn from a zero-mean

unit-variance i.i.d. Gaussian distribution. In this setting, the

conditions in [17] are not satisfied. The latter generically

amount to min(I, J) ≥ LR and K ≥ 2.

Let T be the observed tensor and T̂ the tensor constructed

using the estimates of A, B and C. In Fig. 1(a), we plot

the evolution of the average norm of the residual tensor

‖T −T̂ ‖F for M3, after the JBD stage and after the ALS+ELS

refinement stage. For low SNR, the solution obtained from

the JBD stage is still far from the optimal least squares solu-

tion, and the ALS+ELS final refinement stage significantly

improves the global fit. For high SNR, the JBD solution is

as good as the optimal least squares solution.

In Fig. 1(b), we plot the evolution of the Mean Squared

Error (MSE) of the symbol matrix. We also compare to the

91



0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

10
1

10
2

SNR [dB]

N
o
rm
 o
f 
re
s
id
u
a
l 
te
n
s
o
r 
(F
it
 t
o
 t
h
e
 m
o
d
e
l)

after JBD stage and ALS+ELS refinement stage

after JBD stage

(a)
0 5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

SNR [dB]

M
S
E
 o
f 
s
y
m
b
o
l 
m
a
tr
ix

ALS+ELS (Toeplitz enforced in loop)

ALS+ELS (Toeplitz enforced after convergence)

JBD and ALS+ELS (Toeplitz enforced after convergence)

JBD and ALS+ELS (Toeplitz enforced in ALS+ELS loop)

LS estimator

(b)
0 5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

10
1

SNR [dB]

T
im
e
 (
in
 s
e
c
o
n
d
s
)

ALS+ELS (Toeplitz enforced in loop)

ALS+ELS (Toeplitz enforced after convergence)

JBD and ALS+ELS (Toeplitz enforced after convergence)

JBD and ALS+ELS (Toeplitz enforced in ALS+ELS loop)

JBD stage only (computation of BCD−(L,L,.) via ALS+ELS)

(c)

Fig. 1. Performance of M1, M2, M3, M4 for varying SNR. (a) Evolution of Fit. (b) Evolution of MSE of symbol matrix.

(c) Evolution of execution time.

Least Squares (LS) estimator, in which perfect knowledge of

the antenna response matrix C and the channel matrix A is

assumed. We observe that M1 and M3 perform similarly

and that they are close to the LS estimator. This good

performance results from the Toeplitz structure preservation

strategy inside the ALS+ELS steps. When this structure is

not preserved but only recovered after convergence, the MSE

is worse (M2 and M4). However, the advantage of a good

initialization is clear.

In Fig. 1(c), we compare the evolution of the total ex-

ecution times. We observe that M3 (resp. M4) converges

faster than M1 (resp. M2), which emphasizes again the

importance of the starting value. This is also clear from the

number of iterations (not shown here). The JBD stage has

a low cost compared to the refinement stage. Imposing the

Toeplitz structure in the loop is more accurate but also more

expensive than imposing the structure after convergence.

VI. CONCLUSION

In this paper, we have established a link between the BCD-

(L,L,1) and Joint Block Diagonalization (JBD). For the exact

problem, a closed-form solution has been obtained, even in

the underdetermined case. A deterministic sufficient condi-

tion for essential uniqueness has been derived. An easy-to-

check generic version of this condition was formulated. The

new condition is significantly more relaxed than the existing

conditions. In this paper, we have for simplicity assumed

that all terms have the same multilinear rank (L,L,1). In the

journal version, we will allow the value of L to depend on

the value of r. Although the solution obtained from JBD is

still relatively far from the optimal least squares solution for

high noise levels, it can be regarded as a relatively cheap

way to initialize existing algorithms.
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