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ABSTRACT

In this paper, we show that the problem of detection and

localization of multiple targets in a bistatic MIMO radar

system can be solved by Parallel Factor (PARAFAC) anal-

ysis. Our method is deterministic and fully capitalizes on

the strong algebraic structure of the received data, where the

Radar Cross Section (RCS) fluctuation is not regarded as a

nuisance parameter but rather as a source of time diversity.

Simulation results show that our technique outperforms ex-

isting beamforming-based radar imaging methods at a lower

complexity.

Index Terms— MIMO radars, PARAFAC, DOA-DOD es-

timation

1. INTRODUCTION

Recently, the concept of Multiple-Input Multiple-Output

(MIMO) radar has drawn considerable attention (see [1], [2]

and references therein). A MIMO radar utilizes multiple

antennas at both the transmitter and receiver, but unlike

conventional phased-array radars, it can transmit linearly

independent waveforms. This waveform diversity endows

MIMO radars with superior capabilities relative to phased-

array radars. One can distinguish two main classes of MIMO

radars: MIMO radars with widely separated antennas [2]

and MIMO radars with colocated antennas [1]. The first

class capitalizes on the rich scattering properties of a target

and mitigates Radar Cross Section (RCS) fluctuations by

transmitting linearly independent signals from sufficiently

spaced antennas that illuminate the target from ideally

decorrelated aspects. The second class allows to model a

target as a point-source in the far-field and capitalizes on

the MIMO spatial signatures to estimate the parameters of

interest via coherent processing.

In this paper, we focus on the problems of detection and

estimation of Direction Of Arrival (DOA) and Direction Of

Departure (DOD) of multiple targets present in the same
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range-bin for a bistatic MIMO radar system where the trans-

mit and receive arrays have colocated antennas. In [3], the

monostatic case is considered, i.e., each target has the same

localization w.r.t. both arrays. It is shown that, for a given

pulse period, the angles can be found via a beamforming-

based one-dimensional imaging method. However, changing

a target aspect by as little as one milliradian may result in

variations of the reflected power of 20 dB or more, which

translates to a target scintillation phenomenon caused by fad-

ing. Consequently, if the reflection coefficients of the targets

vary from pulse to pulse (Swerling II model), application of

the radar-imaging technique [3] on a per-pulse basis does not

allow detection and accurate localization of all targets for

every pulse. In [4], the data model of [3] is extended to the

bistatic case and considers several pulse periods through a

Swerling II target RCS model. The method proposed in [4]

for DOA and DOD estimation is a two-dimensional (2-D)

radar imaging method, which consists of looking for the peaks

of a 2-D Capon beamformer output, the latter being computed

for every pair of angles in a region of interest.

Starting from the same data-model as [4], we show that the

detection and localization of multiple targets can alternatively

be achieved by Parallel Factor (PARAFAC) analysis. Our

PARAFAC-based technique is deterministic and fully exploits

the algebraic structure of the received data, where the RCS

fluctuations are not regarded as a nuisance parameter but

rather as a source of time diversity. As we will illustrate by

simulation results, our method outperforms 2-D Capon at a

lower complexity.

Notation. YT is the transpose of Y and YH its complex

conjugate transpose. vec(Y) is the operator that stacks the

columns of Y one after each other in a single vector. diag(y)
is a diagonal matrix that holds the entries of y on its diagonal.

The P × P identity matrix is denoted by IP . The Khatri-

Rao product is denoted �, i.e., [a1, . . . ,aI ]� [b1, . . . ,bI ] =
[a1 ⊗ b1, . . . ,aI ⊗ bI ], where ⊗ is the Kronecker product.

2. PROBLEM STATEMENT

Let us consider a MIMO radar system with the following

parameters:

• a transmit array of Mt colocated antennas,
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• a receive array of Mr colocated antennas,

• K targets in a particular range-bin of interest,

• S ∈ C
Mt×N holds Mt mutually orthogonal transmitted

pulse waveforms, N being the number of samples per pulse

period,

• {θtk
}K

k=1, {θrk
}K

k=1 are the locations of the targets w.r.t.

transmit and receive arrays, respectively,

• A(θt) = [a(θt1), . . . ,a(θtK
)] is the Mt × K transmit

steering matrix and B(θr) = [b(θr1), . . . ,b(θrK
)] the Mr ×

K receive steering matrix,

• Q transmitted pulses,

• βkq is the reflection coefficient of the kth target during

the qth pulse.

Furthermore, we assume that the range of any target is

much larger than the aperture of the transmit and receive

arrays. A target is modeled as a point-source in the far-field,

which is commonly assumed in conventional radar systems,

as well as in MIMO radar systems with colocated antennas

[1]. The steering matrices B(θr) and A(θt) are assumed

constant over the duration of the Q pulses, while the target

reflection coefficients are varying independently from pulse

to pulse (Swerling II model). Assuming non-dispersive prop-

agation, the received signal can be written as [4]

Xq = B(θr)ΣqAT (θt)S + Wq, q = 1, . . . , Q, (1)

where Xq ∈ C
Mr×N collects the N samples received by

each antenna for the qth pulse period, Σq = diag(cq), cq =
[β1q, . . . , βKq], and Wq ∈ C

Mr×N is the interference and

noise term.

If we right-multiply both sides of (1) by 1
N SH , the resulting

model after this matched-filtering operation is

Yq = B(θr)ΣqAT (θt) + Zq, q = 1, . . . , Q, (2)

where

Yq =
1
N

XqSH , Zq =
1
N

WqSH . (3)

Let us now vectorize (2):

yq = (A(θt) � B(θr))cT
q + zq, q = 1, . . . , Q, (4)

where yq = vec(Yq), zq = vec(Zq).
Considering the Q pulses, (4) can be written in the follow-

ing compact form

Y = (A(θt) � B(θr))CT + Z, (5)

where Y = [y1, . . . ,yQ] and Z = [z1, . . . , zQ] are of size

MtMr × Q and CT = [cT
1 , . . . , cT

Q] is of size K × Q. The

model (5) was established in [4] and can be considered as

the generalization of the single-pulse multi-target model [3]

to the multi-pulse Swerling II multi-target model. Given (5),

the following Capon estimator of (θt, θr) was derived in [4]

P̂ (θt, θr) =
1

(a(θt) ⊗ b(θr))HR−1
Y Y (a(θt) ⊗ b(θr))

, (6)

where RY Y = 1
QYYH .

In case of perfect array calibration, a(θt) and b(θr) are

known functions of θt, θr and the targets are localized by

searching for the peaks in the 2-D spectrum P̂ (θt, θr), which

is computed for every pair of angles of interest. As noticed

in [4], this 2-D imaging method fails to work for closely

located targets, since a single lobe may then occur in the

spectrum P̂ (θt, θr) for such targets. Moreover, (6) relies

on the estimation of the sample covariance matrix of the

observed signals, which in turn requires the signals to be

observed over a sufficiently long time interval. Finally, this

approach requires a two-dimensional angular scanning which

may become highly time consuming for a dense angular grid.

In the following section, we propose a deterministic alter-

native to the 2D-Capon method (6) for detection and localiza-

tion of the K targets, which has none of the aforementioned

drawbacks. By recognizing that (5) is a PARAFAC model,

it follows that exploitation of the algebraic structure of Y is

sufficient for unique estimation of A(θt), B(θr) and C, up

to trivial indeterminacies only (arbitrary scaling and permuta-

tion of the columns).

3. REFORMULATION IN TERMS OF PARAFAC
ANALYSIS

Let us first define the Parallel Factor decomposition of a third-

order tensor.

Definition 1. (PARAFAC in tensor format)
A PARAFAC decomposition [5] of a tensor Y ∈ C

I×J×K

is a decomposition of the type Y =
∑R

r=1 ar ◦ br ◦ cr,

where ar, br, cr are the rth columns of the so-called “loading

matrices” A ∈ C
I×R, B ∈ C

J×R and C ∈ C
K×R,

respectively, and ◦ is the outer product, i.e., (ar◦br◦cr)ijk =
airbjrckr, for all values of the indices i, j and k.

Definition 2. (PARAFAC in matrix format)
Let Y(1) ∈ C

IJ×K , Y(2) ∈ C
KI×J and Y(3) ∈ C

JK×I

be the three standard matrix representations of Y ∈ C
I×J×K ,

such that [Y(1)](i−1)J+j,k = yijk, [Y(2)](k−1)I+i,j = yijk

and [Y(3)](j−1)K+k,i = yijk. The PARAFAC decomposition

of Y can then be written under the three following equivalent

matrix forms: Y(1) = (A�B)CT , Y(2) = (C�A)BT and

Y(3) = (B � C)AT .

Let us now build the observed tensor Y and the noise tensor

Z of size Mr ×Mt ×Q, obtained by stacking the Q matrices

Yq and Zq defined in (3) along the third dimension, respec-

tively. From definition 2, it is clear that (5) corresponds to the

PARAFAC decomposition, written in matrix format, of the

noisy observed tensor Y . Once this link established, it follows

that the problem of detection and localization of multiple

targets can be considered from a deterministic perspective, by

capitalizing on the strong algebraic structure of the observed

data rather than their statistics.
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4. IDENTIFIABILITY, DETECTION AND
LOCALIZATION

4.1. Identifiability

The PARAFAC decomposition of Y ∈ C
Mt×Mr×Q is said to

be essentially unique if any matrix triplet Ã(θt) ∈ C
Mt×K ,

B̃(θr) ∈ C
Mr×K and C̃ ∈ C

Q×K that fits the model is

related to A(θt), B(θr) and C via A(θt) = Ã(θt)ΠΛ1,

B(θt) = B̃(θt)ΠΛ2 and C = C̃ΠΛ3 with Λ1, Λ2, Λ3

arbitrary diagonal matrices satisfying Λ1Λ2Λ3 = IK and Π
a permutation matrix.

If no specific structure is assumed on the loading matrices,

identifiability conditions that guarantee essential uniqueness

can be found in [6, 7]. If A(θt) and B(θr) have a Van-

dermonde structure and C has no specific structure, a first

sufficient condition for essential uniqueness has been derived

in [8]. A more relaxed condition was then proven in [9]. The

latter is given by the following theorem.

Theorem 1: Assume that the generators of the Vander-

monde matrices A(θt) and B(θr) are drawn from a contin-

uous distribution and that C is full column rank. If

max(Mt,Mr) ≥ 3 and K ≤ MtMr − min(Mt,Mr), (7)

then the PARAFAC decomposition of Y ∈ C
Mt×Mr×Q is

almost-surely essentially unique.

The first assumption of this theorem implies that A(θt) �
B(θr) is almost-surely full rank [9], which is generically sat-

isfied in practice. The second assumption is also generically

satisfied, provided that Q ≥ K, since our target model is a

classical Swerling II with RCS fluctuations varying indepen-

dently from pulse to pulse.

4.2. Detection of multiple targets

The maximum number of targets that can be identified is

given by (7). Provided that Theorem 1 is satisfied, (A(θt) �
B(θr))CT is generically rank K. It follows that the number

of targets K can be estimated as the number of significant

singular values of Y, i.e., the singular values associated to

the signal subspace.

4.3. Localization of multiple targets

Suppose that the number of targets is known or has been

estimated and satisfies uniqueness of the PARAFAC decom-

position of Y . A PARAFAC model with K components

is first optimally fitted on the observed tensor Y . This

can be done by various optimization algorithms [10] or a

simultaneous-diagonalization based algorithm [7], that we

will use in practice. These algorithms, in their original form,

do not impose a specific structure on the estimates Â(θt),
B̂(θr) or Ĉ. In practice, we recover the manifold structure

of Â(θt) and B̂(θr) a posteriori, i.e., after convergence.

For instance, in the ULA case, the Vandermonde structure

is recovered as follows. We first build the (Mt − 1) × 1
vector d(θti

) = [â(θti
)]2:Mt

./[â(θti
)]1:Mt−1, where ./ is

the element-wise division and â(θti
) is the ith column of

Â(θt). The Mt − 1 points of d(θti) are averaged to get

and estimate of e−j 2π
λ dtsin(θti

), where dt is the inter-element

spacing at the transmitter and λ the carrier wavelength. The

same procedure is applied to every column of Â(θt), to build

the set {θ̂tk
}K

k=1. We proceed similarly to estimate the angles

{θ̂rk
}K

k=1 from B̂(θr). Note that the uniqueness property

of PARAFAC implies that the transmit and receive angles

relative to the same target are automatically paired.

5. EXPERIMENTAL RESULTS

We generate the observed matrices Xq, q = 1, . . . , Q, in (1)

as follows. The mth transmitted waveform, i.e., the mth row

of S, is generated by [S]m,: = 1+j√
2

[HN ]m,:, where HN is

the N × N Hadamard matrix, and N is fixed to 256. We

consider ULA transmit and receive arrays with λ/2 inter-

element spacing for both arrays. The carrier frequency is

fixed to 1 GHz. Following the Swerling Case II target model,

we assume that the reflection coefficient βk of the kth target

obeys the complex Gaussian distribution with zero mean and

unknown variance σ2
βk

. Let us denote by X ∈ C
Mr×N×Q

and W ∈ C
Mt×N×Q the tensors obtained by stacking the

matrices {Xq}Q
q=1 and {Wq}Q

q=1 in (1), respectively, along

the third-dimension. We assume that the elements of the

noise and interference tensor W obey a complex Gaussian

distribution with zero mean and unknown variance. The

Signal to Noise Ratio (SNR) at the input of the receiver is

defined by SNR = 10log10(
‖X (s)‖2

F

‖W‖2
F

) [dB], where X (s) is the

noise-free part of X and ‖ · ‖F is the Frobenius norm.

In a first experiment (Fig. 1), we compare the performance

of our PARAFAC-based method to the 2-D Capon beamform-

ing method (6) proposed in [4], for the two cases Mt =
Mr ∈ {4, 6}, with SNR = 8 dB and Q = 500 pulses. We

consider K = 9 targets, with transmit and receive angles (in

degrees) {θtk
}K

k=1 = {−60,−40,−30, 0, 10, 20, 30, 50, 60}
and {θrk

}K
k=1 = {−20, 70, 40, 0,−60,−50,−40,−10, 50},

respectively. The set {σ2
βk
}K

k=1 holds linearly spaced values

from 0.3 to 0.7. Figs. (1(a)) and (1(c)) represent the “contour”

plot of P̂ (θt, θr) defined in (6), computed for every pair of

transmit and receive angles ranging from −90◦ to 90◦ with an

angular step-size of 0.5◦. With 4 receive and 4 transmit an-

tennas, 2-D Capon does not allow accurate localization of all

targets. For instance, the three closely spaced targets localized

at {θtk
}7

k=5 = {10, 20, 30}, {θrk
}7

k=5 = {−60,−50,−40}
can not be distinguished. On the contrary, PARAFAC al-

lows relatively accurate localization of all targets. When

the number of antennas increases from Mt = Mr = 4 to

Mt = Mr = 6, the performance of 2-D Capon improves but

PARAFAC remains more accurate. Another major advantage
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−90 −70 −50 −30 0 30 50 70 90
−90

−70

−50

−30

0

30

50

70

90

Tr
an

sm
it a

ng
le

Receive angle

(b) PARAFAC, Mt = Mr = 4.

Receive angle

Tr
an

sm
it a

ng
le

−90 −70 −50 −30 0 30 50 70 90
−90

−70

−50

−30

0

30

50

70

90

(c) 2-D Capon, Mt = Mr = 6.
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Fig. 1. SNR=8dB. Q = 500 pulses. K = 9 targets.
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Fig. 2. Impact of the number of antennas on the performance

of PARAFAC and 2-D Capon.

of PARAFAC over 2-D Capon is its low complexity. For

instance, in this experiment, PARAFAC converged after 0.25
sec while 2-D Capon required 28 sec for computing (6) for all

pairs of angles.

In a second experiment (Fig. 2), we compare both methods

via Monte-Carlo simulations. The performance criterion is

the absolute value of the difference between the true angle and

estimated angle, averaged over transmit and receive angles

and over all targets. We simulate the presence of two tar-

gets, characterized by (θt1 , θr1)=(−10◦, −20◦), σ2
β1

= 0.35
and (θt2 , θr2)=(−14◦, −24◦), σ2

β = 0.4, respectively. The

number of pulses is Q = 200. For each SNR value, we

have conducted 100 Monte-Carlo runs. For the comparison

between methods to be fair, the angular resolution for 2-D

Capon is fixed to 0.001◦. Since scanning all angles between

−90◦ and 90◦ with such a small angular step-size takes too

long, we proceed as follows. The first round of scanning is

done with a step-size of 1◦, to get a first localization of the

two highest peaks of P̂ (θt, θr). Then the estimation is refined

individually for each target around those peaks in several

rounds, to reach the final resolution of 0.001◦. Performance

is assessed in three cases: Mt = Mr ∈ {2, 6, 8}. We

observe that PARAFAC outperforms 2-D Capon in all cases.

As expected, the performance of both techniques improves

when the number of antennas increases. Note that 2-D Capon

fails with Mt = Mr = 2, because the targets are too close

to each other for the two lobes to be clearly distinguishable in

the Capon spectrum.

6. CONCLUSION AND FUTURE WORK

We have shown that the detection and DOA-DOD estimation

of multiple targets in a bistatic MIMO radar system can

be accomplished by the PARAFAC decomposition of the

observed data tensor. Unlike conventional radar imaging

approaches, the proposed method is deterministic and fully

capitalizes on the algebraic structure of the data, rather than

on their statistics. Simulation results illustrate the potential

of our technique, which outperforms the 2-D Capon method

proposed in [4], at a lower complexity. Future work includes

the derivation of adaptive PARAFAC algorithms for DOA-

DOD tracking.
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