
LINE SEARCH COMPUTATION OF THE BLOCK FACTOR MODEL FOR BLIND
MULTI-USER ACCESS IN WIRELESS COMMUNICATIONS

Dimitri Nion, Lieven De Lathauwer

ETIS,UMR 8051 (CNRS, ENSEA, UCP)
6, avenue du Ponceau, BP 44, F 95014 Cergy-Pontoise Cedex, France

email: nion@ensea.fr, delathau@ensea.fr

ABSTRACT

In this paper, we present a technique for the blind separa-
tion of DS-CDMA signals received on an antenna array, for a
multi-path propagation scenario that generates Inter-Symbol-
Interference. Our method relies on a new third-order tensor
decomposition, which is a generalization of the parallel fac-
tor model. We start from the observation that the temporal,
spatial and spectral diversities give a third-order tensor struc-
ture to the received data. This tensor is then decomposed in
a sum of contributions, where each contribution fully char-
acterizes one user. We also present a Line Search scheme
that greatly improves the convergence speed of the alternat-
ing least squares algorithm previously used.

1. INTRODUCTION

Let us consider R users transmitting frames of J symbols at
the same time within the same bandwidth towards an array
of K antennas. We denote by I the spreading factor, i.e.,
the CDMA code of each user is a vector of length I . In a
direct-path only propagation scenario, the assumption that the
channel is noiseless / memoryless leads to the following data
model:

yijk =

R
∑

r=1

hirsjrakr, (1)

where yijk is the output of the kth antenna for chip i and sym-
bol j. The scalar akr is the gain between user r and antenna
element k, sjr is the j th symbol transmitted by user r and hir,
for varying i and fixed r contains the spreading sequence of
user r. Note that this model can also include memory effects,
provided that a discard prefix or guard chips are employed
to avoid Inter-Symbol-Interference (ISI) [1]. For background
material on algebraic solutions to this problem, we refer to
[2]. In this article, we focus on the more complex situation
where multi-path propagation leads to ISI. We also assume
that the reflections can both occur in the far and close fields
of the antenna array so that each path is characterized by its
own delay τp , angle of arrival θp and attenuation αp, where

p denotes the path index. Under these assumptions, our ob-
jective is to estimate the symbols transmitted by every user in
a blind way, without using prior knowledge on the propaga-
tion parameters or the spreading codes. Our approach consists
of collecting the received data in a third-order tensor and to
express this tensor as a sum of R contributions by means of
a new tensor decomposition: the Block Factor Model intro-
duced in [3, 4].

In section 2, we introduce some multilinear algebra pre-
requisites. In section 3, we discuss the PARAFAC decom-
position, which has been used to implement a blind receiver
for the model of equation (1) [1]. In section 4, we discuss the
Block Factor Model, which is a generalization of the PARAFAC
model. In section 5, we propose a new Line Search scheme
which greatly improves the performance of the Alternating
Least Squares algorithm derived in [3].

2. MULTILINEAR ALGEBRA PREREQUISITES

A multi-way array of which the elements are addressed by N

indices is an N th-order tensor. Signal processing based on
multilinear algebra is discussed in [5].

Definition 1. (Mode-n product) The mode-1 product of
a third-order tensor Y ∈ CL×M×N by a matrix A∈ C

I×L,
denoted by Y ×1 A, is an (I ×M ×N )-tensor with elements
defined, for all index values, by

(Y ×1 A)imn =
L

X

l=1

ylmnail

Similarly, the mode-2 product by a matrix B∈ C
J×M and

the mode-3 product by C∈ C
K×N are the (L × J × N ) and

(L× M × K) tensors respectively, with elements defined by

(Y ×2 B)ljn =
M

X

m=1

ylmnbjm

(Y ×3 C)lmk =
N

X

n=1

ylmnckn

In this notation, the matrix product Y = U.S.VT takes
the form of Y = S ×1 U ×2 V.
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Definition 2. (Rank-1 Tensor) The third-order tensor
Y ∈ RI×J×K is rank-1 if its elements can be written as
yijk = a(i)b(j)c(k), where a ∈ CI×1, b ∈ CJ×1 and
c ∈ CK×1. This definition generalizes the definition of a
rank-1 matrix: A ∈ C

I×J has rank 1 if A = a.bT .
Definition 3. (Tensor Rank) The rank of Y is defined as

the minimum number of rank-1 tensors that yield Y in a linear
combination.

Definition 4. (Frobenius Norm) The Frobenius Norm of
the tensor Y ∈ RI×J×K is defined by

‖Y‖
2

=

v

u

u

t

I
X

i=1

J
X

j=1

K
X

k=1

|yijk|2.

Definition 5. (Khatri-Rao Product) The Khatri-Rao prod-
uct of two matrices A ∈ C

I×R and B ∈ C
J×R that have the

same number of columns, denoted by A�B, is an (IJ ×R)-
matrix with elements defined, for all index values, by

(A �B)(i−1)J+j,r = ai,rbj,r.

The Khatri-Rao product is also referred to as to column-wise
Kronecker product: (A�B) = [a1⊗b1 . . .aR⊗bR], where
ar and br denote the rth column of A and B respectively and
⊗ the Kronecker product.

Definition 6. (Partition-wise Kronecker product) The
partition-wise Kronecker product of two matrices A ∈ CI×RM

and B ∈ CJ×RN , consisting of R submatrices Ar and Br of
size I × M and J × N respectively, denoted A �R B, is an
(IJ × RMN) matrix defined by

A�R B = [A1 ⊗B1 . . .AR ⊗BR].

3. PARAFAC DECOMPOSITION

Parallel Factor Analysis (PARAFAC) was introduced by Harsh-
man in [6]. It is a powerful technique to decompose a rank-R
tensor in a linear combination of R rank-1 tensors. Let Y be
an (I × J × K) tensor, with elements denoted by yijk . The
PARAFAC decomposition of Y can be written as

yijk =

R
∑

r=1

ar(i)br(j)cr(k), (2)

where ar, br, cr are the rth columns of matrices A ∈ CI×R,
B ∈ CJ×R and C ∈ CK×R respectively, and where i, j

and k denote the row index. It now appears that the model
for a memoryless channel (1) can be seen as a PARAFAC de-
composition of the observation tensor Y . Sidiropoulos et al.
were the first to use this multilinear algebra technique in the
context of wireless communications [1]. The algorithm com-
monly used to calculate the PARAFAC decomposition is an
Alternating Least Squares (ALS) algorithm. Given only Y ,

it consists of alternating conditional updates of the unknown
matrices A, B and C. Though easy to implement, the con-
vergence of this algorithm is occasionally slow.

It was noticed through simulations that, when the conver-
gence is slow, A, B and C are gradually incremented along
fixed directions. In [7], Line Search (LS) was proposed to
speed up the convergence of ALS. The new values of A, B

and C are sought on the line through their current estimates
and the ALS updates. In [7], the step size is heuristic. In
[8], the optimal step size is determined and the new method is
called “Enhanced Line Search” (ELS). These methods were
proposed for real data that fit the PARAFAC model. In this
paper we will generalize the results to Block Factor Model.
Since in the CDMA context the data are complex, we will
look for the optimal step in C.

4. BLOCK FACTOR MODEL

4.1. Data Model: Analytic Form

For the propagation scenario that takes into account multi-
path and ISI, a more general algebraic model has been intro-
duced in [3], and is referred to as Block Factor Model (BFM).
Let us start with a single source transmitting J symbols along
P paths towards K antennas. These paths can be considered
as channels with memory, leading to ISI, and are assumed to
be stationary over J symbols. Let L be the maximum channel
length at the symbol rate, meaning that interference is occur-
ring over maximally L symbols. The coefficients resulting
from the convolution between the channel impulse response
for the pth path and the spreading sequence of the user un-
der consideration are collected in a vector hp of size LI . So
hp(i + (l − 1)I) is the coefficient of the overall impulse re-
sponse corresponding to the ith chip and the lth symbol. We
denote by xp(i, j) the ith chip of the signal received from the
pth path during the jth symbol period. We have:

xp(i, j) =

L
∑

l=1

hp(i + (l − 1)I) sj−l+1. (3)

Let ak(θp) be the response of the kth antenna to the signal
coming from the pth path with an angle of arrival θp, where
we assume that the path loss is combined with the antenna
gain. The model defined in (3) then yields:

xp(i, j, k) = ak(θp)

L
∑

l=1

hp(i + (l − 1)I) sj−l+1, (4)

where xp(i, j, k) denotes the ith chip of the jth symbol of the
signal received by the kth antenna. We now write the overall
received signal by summing the contributions of the P paths
and the R users:

yijk =
R

∑

r=1

P
∑

p=1

ak(θrp)
L

∑

l=1

hrp(i + (l − 1)I) s
(r)
j−l+1, (5)



SR
T

=    +  ...  +
S

A A

1

1 R

T

I II

J

J J

K

K K

L L

LL

P P

PPPSfrag replacements

Y H1 HR

Fig. 1. Schematic representation of the BFM

where yijk denotes the ith chip of the jth symbol of the signal
received by the kth antenna, and in which r, p and l are the
user, path and interfering symbol index respectively.

4.2. Data Model: Algebraic Form

We have established in [3] that, algebraically, (5) can be ex-
pressed as:

Y =

R
∑

r=1

Hr ×2 Sr ×3 Ar. (6)

This BFM is represented in Figure 1. Each term of the sum in
(6) contains the information related to one particular user. The
global channel is characterized by the tensor Hr ∈ CI×L×P ,
where each slice Hr(:, :, p) collects I ×L samples of the vec-
tor resulting from the convolution between the spreading se-
quence of the rth user and the overall impulse response of the
channel corresponding to the pth path. The antenna array re-
sponse is given by Ar ∈ CK×P , where each column-vector
represents the response of the K antennas to the pth path. The
J transmitted symbols are collected in a matrix Sr, which has
a Toeplitz structure.

The BFM defined in (6) is intrinsically indeterminate as
follows:

Y =

R
∑

r=1

(αrHr ×3 Ur) ×2 (α−1
r Sr) ×3 (U−1

r Ar), (7)

where the scalar αr and the non-singular matrix Ur represent
the indeterminacy in modes two and three respectively. Note
that the indeterminacy in the second mode involves a scalar
rather than a matrix due to the Toeplitz structure of Sr.

4.3. Uniqueness of the BFM

If the BFM (6) is unique (up to the trivial indeterminacies),
then its computation allows for the separation of the different
user signals and the estimation of the transmitted sequences.
We call a property generic when it holds everywhere, except
for a set of Lebesgue measure 0. A generic condition for
uniqueness has been derived in [4]:

min

„—

J

L

�

, R

«

+min

„—

K

P

�

, R

«

+min

„—

I

max(L, P )

�

, R

«

≥ 2R+2,

(8)

if I > L + P − 2. If I ≤ L + P − 2, then some addi-
tional conditions apply. This result implies an upper bound
on the number of users that can be allowed at the same time.
The maximal number of simultaneous users correspond to the
maximal value R that satisfies (8).

4.4. ALS Computation of the BFM

Given only Y , we want to estimate Hr, Sr, and Ar for each
user. We denote by A and S the K × RP and J × RL ma-
trices that result from the concatenation of the R matrices
Ar and Sr respectively. Let H be an RLP × I matrix in
which the entries of the tensors Hr are stacked in the follow-
ing way: [H](r−1)LP+(l−1)P+p,i = Hr(i, l, p). We define by
Y

(JK×I) the JK × I matrix representation of Y , obtained
from

[

Y
(JK×I)

]

(j−1)J+k,i
= yijk . This matrix can be con-

sidered as the result of row-wise concatenation of the J trans-
posed left-right slices of Y . Note the order in which the en-
tries are stacked, with the left index (j here) varying more
slowly than the right one. We denote by Y (n) an estimation
of Y at the nth iteration, built from the updated factors A

(n),
S

(n) and H
(n). The ALS algorithm derived in [3] exploits the

multilinearity of model (6) to alternate between conditional
least-squares updates of the unknowns A, S and H in each
iteration. The cost function that is minimized, is given by:

φALS =
‚

‚

‚
Y − Y(n)

‚

‚

‚

2

2
(9)

=
‚

‚

‚Y
(JK×I) − (S(n) �R A

(n))H(n)
‚

‚

‚

2

2
.

Explicit expressions for A(n), S(n) and H
(n) are given in [3].

5. NEW COMPUTATION SCHEME FOR THE BFM

5.1. Line Search procedure

Though easy to compute, the ALS algorithm can be slow.
In particular, it is sensitive to swamps (i.e., several iterations
with convergence speed almost null after which convergence
resumes). In this section, we propose a new Line Search com-
putation scheme that improves the way the unknowns are up-
dated.

The Line Search procedure consists of the prediction of
the unknown factors a certain number of iterations ahead from
the following linear regression:

8

<

:

A
(new) = A

(n−2) + ρA

`

A
(n−1) −A

(n−2)
´

S(new) = S(n−2) + ρS

`

S(n−1) − S(n−2)
´

H
(new) = H

(n−2) + ρH

`

H
(n−1) −H

(n−2)
´

, (10)

where A
(n−1), S

(n−1) and H
(n−1) are the estimates of A,

S and H respectively, obtained in the (n − 1)th ALS iter-
ation. The matrices G

(n)
A =

(

A
(n−1) −A

(n−2)
)

, G
(n)
S =

(

S
(n−1) − S

(n−2)
)

, and G
(n)
H =

(

H
(n−1) −H

(n−2)
)

repre-
sent the search directions in the nth iteration and ρA, ρS and



ρH are the relaxation factors, i.e., the step size in the search
directions. The matrices A

(new) , S(new) and H
(new) are then

used to start the nth iteration of the ALS.
It is in principle possible to consider different relaxation

factors for the different modes, but this makes the computa-
tion more expensive. In this article, we consider the same
relaxation factor for the three modes: ρA = ρS = ρH = ρ.

The optimal relaxation factor is found by the minimiza-
tion of:

φ
(n)
ELS

=
‚

‚

`

S(new) �R A(new)
´

H(new) −Y(JK×I)
‚

‚

2

2

=
‚

‚

‚

“

(S(n−2) + ρG
(n)
S

) �R (A(n−2) + ρG
(n)
A

)
”

“

H(n−2) + ρG
(n)
H

”

− Y(JK×I)
‚

‚

‚

2

2
.

(11)
This equation can be written as follows:

φ
(n)
ELS

=
‚

‚ρ3
T3 + ρ2

T2 + ρT1 + T0

‚

‚

2

2
, (12)

in which the JK×I matrices T3, T2, T1 and T0 are defined
as:

8

>

>

<

>

>

:

T3 = (GS �R GA)GH

T2 = (GS �R GA)H + (S �R GA + GS �R A)GH

T1 = (S �R A)GH + (S �R GA + GS �R A)H

T0 = (S �R A)H −Y(JK×I)

,

where the superscripts n and n−2 have been omitted for con-
venience of notation. Denote by Vec the operator that writes
a matrix A ∈ CI×J in vector format by concatenation of the
columns such that A(i, j) = [Vec(A)]i+(j−1)I .

Eq. (12) is then equivalent to:

φ
(n)
ELS

= ‖T · u‖2
2 = u

H · TH · T · u, (13)

where the matrix T = [Vec(T3)|Vec(T2)|Vec(T1)|Vec(T0)]
of size IJK × 4 is obtained by column-wise concatenation
of the vector representation of T3, T2, T1 and T0 respec-
tively, where u = [ρ3, ρ2, ρ, 1]T is a vector of size 4 × 1
and .H denotes the Hermitian transpose. The 4 × 4 matrix
∆ = T

H · T has complex elements defined by [∆]m,n =
αm,n+jβm,n. Since ∆ is Hermitian, we have: αm,n = αn,m,
βm,n = −βn,m and βm,m = 0.

For real-valued data, (13) reduces to a polynomial of de-
gree 6 w.r.t. the real variable ρ and can thus easily be mini-
mized. The case of complex-valued data is more difficult. We
write the relaxation factor as ρ = r.eiθ, where r is the modu-
lus of ρ and θ its argument, and propose an iterative scheme
that minimizes φ

(n)
ELS alternately w.r.t. r and θ. The com-

plexity of the sub-steps is low. On the other hand, it is not
necessary to compute the minimum of φ

(n)
ELS with high preci-

sion, as the goal is only to accelerate the ALS algorithm. As a
result, for typical data dimensionalities, the cost of estimating
ρ is negligible w.r.t. the cost of the ALS sub-step.

Enhanced Line Search Scheme:
1. Partial minimization of φ

(n)
ELS w.r.t. r.

The partial derivative of φ
(n)
ELS w.r.t. r can be expressed

as:
δφ

(n)
ELS

(r)

δr
=

5
X

p=0

cprp, (14)

where the real coefficients cp are given in Appendix and only
depend on θ, αm,n and βm,n. Given θ, this step consists of
finding the real roots of a polynomial of degree 5 and selecting
the root that minimizes φ

(n)
ELS(r).

2. Partial minimization of φ
(n)
ELS w.r.t. θ.

After a change of variable, t = tan( θ
2 ), the partial deriva-

tive of φ
(n)
ELS w.r.t. t can be expressed as:

δφ
(n)
ELS

(t)

δt
=

P6
p=0 dptp

(1 + t2)3
, (15)

where the real coefficients dp are given in Appendix and only
depend on r, αm,n and βm,n. Given r, this step consists of
finding the real roots of a polynomial of degree 6 and selecting
the root that minimizes φ

(n)
ELS(t).

3. Repeat from step 1 until
∥

∥

∥
φ

(n)
ELS − φ

(n−1)
ELS

∥

∥

∥

2

2
< η (e.g. η = 10−1)

This ELS scheme is inserted in the standard ALS algo-
rithm scheme as follows:

Algorithm 1 Summary of the ALS+ELS algorithm:

1- Initialize A
(n−2), S

(n−2), H
(n−2), G

(n−2)
A , G

(n−2)
S ,

G
(n−2)
H , n = 2.

2- ELS Scheme:
- Find the optimal value of ρ from (14) and (15).
- Build A

(new), S(new) and H
(new) from (10).

3- ALS Steps:
- Find A

(n) from S
(new) and H

(new).
- Find S

(n) from A
(n) and H

(new).
- Find H

(n) from A
(n) and S

(n).
4- Repeat from 2 until c(n) < ε (e.g. ε = 10−5),
where c(n) =

∥

∥Y(n) − Y(n−1)
∥

∥

2

2
.

- Increase n to n + 1

5.2. Results of simulations

In this section, we illustrate the performance of the ALS+ELS
algorithm for the calculation of the BFM and we compare
with the standard ALS algorithm presented in [3]. We assume
the presence of Additive White Gaussian Noise (AWGN) so
that the observed tensor is given by Yobs = Y + N , where
Y is the tensor that contains the data to be estimated (Eq. 6)
and N contains noise with variable variance. The following
simulation shows the result obtained from 1000 Monte-Carlo
trials with spreading codes of length I = 6, a short frame of
J = 50 QPSK-symbols, K = 6 antennas, L = 2 interfering
symbols, P = 2 paths per user and R = 4 users, which means
that we are on the uniqueness bound defined in (8).

In Fig 2(a), we show the accuracy of the BFM calcu-
lated either by ALS or ALS+ELS in terms of the Bit Er-
ror Rate (BER), and we compare to the performance of the
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Fig. 2. Performance of ALS and LM in presence of AWGN.

MMSE (Minimum Mean-Square Error) estimator, which as-
sumes perfect knowledge of the channel (tensors Hr known)
and the antenna array response (matrices Ar known). We
also plot the performance of two semi-blind techniques (ei-
ther Hr or Ar known). It turns out that the performance
of the blind receiver based on BFM is close to the MMSE
(the gap between the two curves reduces for increasing values
of SNR). The ALS and ALS+ELS algorithms give the same
curve which was expected since these methods both reduce
the same cost function.

In Fig 2(b) and 2(c), we compare the mean number of it-
erations and the mean CPU time required by standard ALS
and by ALS+ELS for the 1000 runs. It is clear that the ELS
scheme allowed to considerably reduce the number of itera-
tions (e.g. gain of 59 percent for SNR=6dB) and that the cost
of computing the step size is negligible w.r.t. the cost of the
ALS sub-step (the gain of time is 57 percent for SNR=6dB).

6. CONCLUSION

In this paper, we have shown how Block Factor Analysis of a
third-order tensor leads to a powerful blind receiver for multi-
user access in wireless communications. The tensor model
takes both ISI and multi-path propagation aspects into ac-
count, which was not the case for the blind PARAFAC re-
ceiver in [1]. The method works for very short data sequences,
or, equivalently, for channels that are fast varying and our
model can be applied to other systems where three diversities
are available. The computation strategy for the calculation of
the BFM decomposition is an important issue. It turns out
that an ELS scheme greatly improves the convergence speed
of the ALS algorithm.

APPENDIX

Coefficients cp in equation (14):
8

>

>

>

>

>

<

>

>

>

>

>

:

c5 = 6α11

c4 = 10(α12cos(θ) + β12sin(θ))
c3 = 4(α22 + 2α13cos(2θ) + 2β13sin(2θ))
c2 = 6(α14cos(3θ) + α23cos(θ) + β14sin(3θ) + β23sin(θ))
c1 = 2(α33 + 2α24cos(2θ) + 2β24sin(2θ))
c0 = 2α34cos(θ) + 2β34sin(θ)

Coefficients dp in equation (15):
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

d6 = −2β12r5 + 4β13r4 − 2(β23 + 3β14)r3 + 4β24r2 − 2β34r

d5 = −4α12r5 + 16α13r4 − 4(α23 + 9α14)r3 + 16α24r2 − 4α34r

d4 = −2β12r5 − 20β13r4 − 2(β23 − 45β14)r3 − 20β24r2 − 2β34r

d3 = −8α12r5 − 8(α23 − 15α14)r3 − 8α34r

d2 = 2β12r5 − 20β13r4 + 2(β23 − 45β14)r3 − 20β24r2 + 2β34r

d1 = −4α12r5 − 16α13r4 − 4(α23 + 9α14)r3 − 16α24r2 − 4α34r

d0 = 2β12r5 + 4β13r4 + 2(β23 + 3β14)r3 + 4β24r2 + 2β34r
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