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ABSTRACT period). We show that the problem can be solved by a decom-
In this paper, we consider the problem of blind se arationpOSition in rank-(LL.,1) terms of the tensor of observation

> Paper, € p =parations ;q multilinear model [5,6] is a generalization of PARAFAC
equalization of DS-CDMA signals, from convolutive mix-

Moreover, the technique proposed in [5, 6] to calculate this

tures received by an antenna array. We suppose that mul L . i
path reflections occur in the far-field of this array and thatdecomposmon IS an Alternating Least Squares (ALS) algo

Inter-Svmbol-Interference is caused by large delav s rearithm, which is known to be sensitive to local minima and
ymbor S d Dy large Y sP %ometimes needs a large number of iterations to converge. We
Our receiver is deterministic and relies on a third-ordeste

decomposition, called decomposition in rank-(L,L,1) teym derive here a Simultaneous Diagonalization (SD) algorithm

S o that outperforms ALS and also allows to extract more users’
which is a generalization of the well-known Parallel Factor G .
contributions than previously stated.

(PARAFAC). decomposn.lc_)n. _The technlqge We propose to The article is organized as follows: in Section 2, we recall
calculate this decomposition is based on simultaneous»matr . L )

. L L the discrete-time instantaneous and convolutive data feode
diagonalization, which is more accurate than the stand&rd Afor the received signal. In Section 3, we introduce some mul-
ternating Least Squares (ALS) algorithm and also allows t(%ilinear algebra prereduisites. In éection 4, we discuss th

blindly identify more users than previously stated. PARAFAC decomposition of a third-order tensor and the de-
composition in rank-(L,L,1) terms. In Section 5, we develop

1. INTRODUCTION a Simultaneous Diagonalization (SD) algorithm to compute

the decomposition in rank-(L,L,1) terms. In Section 6, we

Blind separation of signals impinging on an antenna arrayllustrate the performance by simulation results.
is of paramount importance in many commercial and mili-

tary applications such as source localization, sensobreali

tion, and eavesdropping. Moreover, most of the blind prob-
lems in the literature are formulated in terms of second ory 4
der algebra and we refer to [1] and references therein for an ™
overview of the existing approaches. The authors of [2] werdet us consideR users transmitting at the same time within
the first to propose a multilinear algebraic approach toesolvthe same bandwidth, frames df symbols spread by DS-
the DS-CDMA multiuser blind separation-equalization prob CDMA codes of lengtll, towards an array ok antennas. In
lem. By fully exploiting the spatial, temporal and code dive a direct-path only propagation scenario, the assumptian th
sities, they have shown that the samples of the receivedlsignthe channel is noiseless and memoryless leads to the follow-
can be stored in a third-order tensor (i.e. a cube) thatf@lo ing instantaneous data model without Inter-Chip-Intenfiee:

the well-known PARAFAC model [3, 4]. Interestingly, the

deterministic blind PARAFAC DS-CDMA receiver does not & ™) () (r)

require knowledge of the channel, CDMA-codes, DOA cal- Yijk = Zci S5 0k 1)
ibration or statistical independence. However, this maslel r=1

only valid if the multipath reflectors are in the far field ofth wherey,, is the sample of the signal received by thié

receive antenna array and if the delay spread is small (i.e. lantenna at thé” chin-sampling instant within the” svmbol
the order of a few chips), such that Inter-Symbol-Intenfiers P pind 7 sy

. (r) : .
(ISI) can be avoided by adopting a “guard chips” or a “discardDe”Od' The scalark(r)ls_ the fading factor betwee_n useand
prefix” strategy. antenna elemert, s; * is the j** symbol transmitted by the

2. DATA MODEL: ANALYTIC FORM

Instantaneous model

In this paper, we focus on the more complex situation with-*" user and:ET) is thei*" chip of the CDMA code assigned
ISI caused by large delay spread (i.e. more than one symbtad userr.



2.2. Convolutive model This definition generalizes the definition of a rank-1 ma-

. . . L trix: A € C'*/ hasrankl if A = a-b”.
We now consider a multipath propagation scenario with large Definition 4. (Tensor Rank) The rank of) is defined as

delay spread. We assume that for a given user, the muItipa]EHe minimum number of rank-1 tensors yieldyidn a linear
channel is the same for all antennas, up to a muItipIicativ%ombinaﬂon

fadingfactoragf), whichis valid when the multipathreflectors  pefinition 5. (Kruskal Rank of a Matrix) The Kruskal

are in the far field of the antennas [2, 7]. If we denotecﬁa;xz rank of a matrixA, denoted by:(A), is defined as the maxi-
theit" chip of the signal received by theé” antenna during mal number such thatany set ofk columns ofA is linearly

the j'" symbol period for the" user, we get: independeni8].
L
" " ) (; r 4. TENSOR DECOMPOSITIONS
el = a3 KOG+ -1, (@
=1

4.1. PARAFAC Decomposition

whereh (") contains the coefficients obtained by convolutionThe PARAIlel FACtor (PARAFAC) model or CANonical ten-
between the impulse response of ifie channel and the'*  sor DECOMPosition (CANDECOMP) was independently in-
CDMA code. L is the number of interfering symbols. So troduced in [4] and [9]. It aims at decomposing a tensor as a
h{")(i + (1 — 1)1) is the coefficient of the overall impulse re- |inear combination of a minimal numb@ of rank-1 tensors.
sponse at the chip rate corresponding toittiechip and the et ) be an(I x J x K) tensor, with elements denoted by

Ith interfering symbol. We_finall;_/ get the exprefssion for oney, .. The PARAFAC decomposition @ can be written as
sample of the overall received signal by summing the contri-

butions ofR users: R
. ; Yisk = Z al(‘r)b;r)cl(:)7 (4)
o (r) ) (; (r) r=1
vie =3 _a Y O+ (-0 (3)
—1 =1 ! wherea™, b("), ¢(") are thert® columns of matriceA €

CIxE B € C/7* andC € CK*F respectively, and where
3. MULTILINEAR ALGEBRA PREREQUISITES i, j andk denote the row index. In [8], Kruskal proved that
the PARAFAC decomposition (4) is unique (up to some trivial
Definition 1. (Tensor) A multi-way array of which the indeterminacies) if
elements are addressed Byindices is anVth-order tensor.
Definition 2. (Mode-n product) The mode-1 product of
a third-order tensory € CL*XMxN by g matrixAe C'*F,
denoted byy e; A, isan (I x M x N)-tensor with elements
defined, for all index values, by

k(A) + k(B) + k(C) > 2(R+ 1). (5)

In [2], the authors established the link between this de-
composition and the data model of Eq. (1). In fact, this equa-
tion can be seen as a PARAFAC decomposition of the tensor
L of observationy) € C'*/*K where each user contribution

(Vo1 A)in = Zylmnail is characterized by a rank-1 tensor. Eq. (5) should be seen
=1 as a bound ok guaranteeing unigueness of the decompo-
sition. In the next subsection, we show how the convolutive
Similarly, the mode-2 product @f by a matrixBe C/*"  data model of Eq. (3) can algebraically be written as the de-
and the mode-3 product bge CX*" arethe ¢ x J x N)  composition in rank-(L,L,1) terms of the third-order teneb
and (L x M x K) tensors, respectively, with elements definedbservations.

by
M . .
4.2. Decomposition in rank-(L,L,1) terms
(y ® B)ljn = Z ylmnbjm . . . .
m=1 From Eq. (2), for a given user (indexfixed) and for a given
N antenna (index fixed),:cgk can be considered as an element
(Y 5 C)ii = Z YimnChn of the following (I x J) matrix Xy,
n=1
Xpr = a](:) (Hr ® S7> ) (6)

In this notation, the matrix produdf = U-S- V7 takes ] o ]
the formofY = Se; U e, V. whereH,. is the (( x L) matrix with elements defined by

Definition 3. (Rank-1 Tensor) The third-order tensor (Hr)i; = h") (i+(1~1)I) andS, is the ¢/ x L) Toeplitz ma-
Y e CI*7xK js rank-1 if its elements can be written as trix with elements defined b§S,);, = sg.r_)Hl, i=1...1,
Yijk = a;bjcg, Wherea € C'*1, b € C/*! andc € CK*1, j=1...Jandl=1...L. ' '



/ar 5. SIMULTANEOUS DIAGONALIZATION
K

K Simultaneous diagonalization (SD) of a set of matrices has
J . . . .
_ R LE become a popular tool in blind signal separation. In [10, 11]
"=l 7 the authors have derived a SD algorithm for the PARAFAC
Ny | S, decomposition, that outperforms ALS. Moreover, they have
H shown that this approach implies a new boundi®that is

significantly more relaxed than (5). In this section, we gene
alize the SD technique to the calculation of the decompwsiti

Fig. 1. Schematic representation of the decomposition in, rank-(L,L,1) terms. We make the following assumptions on
rank-(L,L,1) terms the dimensions:

I>1L
For a given user, and for all values of indexesj, k and I>1IL ) (10)
[, the samplecg.,)C can thus be stored in the following third- min(IJ,K) > R

order tenso®t, € CI*7xK:
Consider ar(I x J x K) tensor) of which the decom-

X.=—H, eSS, e3a,, (7)  position in rank-(L,L,1) terms is given by

where X, represents the global contribution from a single R

user, anda,. is the (' x 1) vector that contains the fading Y= ZXT ®3ar,
factorSQ,(f) for the K antennas. Finally, we consid&rusers =

transmitting at the same time, so we obtain the following tenin which the ¢ x J) matricesX,. result from

sor equivalent of (3) after summing tiizcontributions:
X, =H,e S, =H, S’

R
Y= Z H, e, S, e52a,. (8) Let us build the matrity € C/7*¥ in which the entries
r=1 of Y are stacked as follows:

Equation (8) stands for the decomposition)din a sum of
rank-(L,L,1) terms [5, 6], and is visualized in Fig. 1. Note
that if the delay spread is small (no ISI), i.&.= 1, Eq. (8)  This matrix can be seen as the result of row-wise concatena-
is equivalent to PARAFAC. tion of the J matrices()). ;. of size ( x K). According

A generic sufficient condition for uniqueness of this de-ty the multilinear model under consideration, this matex ¢
composition has been derived in [6]: also be written as:

(Y)(j—1)1+i,k = Yijk-

min Q%J 7R> + min ({ZIJ ’R> +min(K,R) >2R+2, (9 Y = ( vee(Xy1) -+ wvee(XRgr) ) AT =X AT, (11)

which implies an upper bound on the number of users that camhere the operatarec builds a vector from a matrix by stack-
be allowed at the same time. LEt, S and A be the matrices ing the columns of this matrix one above the other. Under
of size ( x LR), (J x LR) and (K x R), respectively resulting the assumption (10), we can expect the ranKlpfc C/*%,
from the concatenation &, S, anda,.,r = 1...R. From S, € C/*! andX, € C'*’ to be equal td.. Moreover, we
the knowledge of the tensor of observatign®nly, the cal- can expect the rank & € C’//*® and A € CX*% to be
culation of the decomposition in rank-(L,L,1) terms cotssis equal toR, which implies that the rank oY is R. Consider

of the blind estimation of these matrices by minimization ofthen the “economy size” SVD of :

the quadratic cost function

Y=U.X VI (12)
R
G(H,S,A) =Y - H,e;S, 034, in whichU € C/7*% andV € CK*% are column-wise or-
r=1 thonormal matrices and in whice € C#* % is positive di-

onal.

. . a
This can be done by means of an Alternating Least Squaresg If we putE = U - %, then we deduce from (11) and

(ALS.) .algonthm [, 6]. Howgvgr, this algorlt.hr_n. can t_>e slow (12), that there exists an a priori unknown non-singularixat
and it is sensitive to local minima. Several initializatsosre RxR o Finc-

: . . L WeC that satisfies:
thus often needed to find a reliable solution, which increase
the computational cost. With respect to this problem, a Si- X = E-W
multaneous Diagonalization technique is very attractive. AT = W-l.vVH

(13)



It is sufficient to estimate the matrw to find H, S andA. Assume at this point that there exists a symmetric thirceord
Obviously,A = V* . W~7, Furthermore, the columns of tensorM of which the entriesn,.,; satisfy the following set
E - W correspond to the vectorized representation of the ( of homogeneous linear equations (we will justify this aspum
J) matricesX,. = H,. - S of rank-L. Thus, the columns of tion below):

H,. can be estimated as tlieleft singular vectors associated R

with the L largest singular values &.,.. The matrixS, then Z M5t Prst = 0. (16)

corresponds to the product of the fidstsingular values and rst=1

the L associated right singular vectors. We define the seP = {® (E,, E,, E,)|1 < u # v <
The task is now to findW that satisfies (13). Fromthe Rl |y {® (E,, E,, E,)|[1 < u < v < w < R}. If Pis

matrixE € C/"**, we build the set of matricd8,,...,Er € |inearly independent, then after substitution of (15) i6)(1

C™/, defined by and using the symmetry @ and M, we can show tha®V is

solution of:

E, = unvec((E). ,),

where(E). ,. is ther” column ofE andunvec is the operator M=De; We We; W, (17)

that stacks the entries of d{ x 1) vectoru in an ( x J)

) in which D is di I. Actually, how thany di-
matrix U as follows:(U); ; = (u)(;—1)7+:;. We thus have n Which = 1s dlagona’. Actaty, we can snow e

agonal tensoP generates a tensgvt that satisfies Eq. (16).
Hence, ifP is linearly independent, the tenso¥$ form anR-

_ <. W-1)
E = u;wec((X W ir) dimensional subspace of the symmetiitx R x R) tensors.
_ Let {M, } represent a basis of this subspace, known from the
_ QT 1
- ;(HT Sy ) (W™ 149 yernel of the seP, cf. (16). We have:
This means that the matric&s. consist of linear combi- Mi = DiegWe; We3 W

nations of the rank-L matriceX, = H, - ST. Turned the

other way around, we now have to find the linear combina- '

tions of the matrice®, that yield rank-L matrices, because Mgr = DreiWey; Wez3 W (18)

the coefficients of these linear combinations will yield tha-

trix W we are looking for. To solve this problem, we need a Rt

tool that allows us to determine whether a matrix is rank-L ofmatrix slices otM,, ..., Mr:

not. T
For the sake of clarity and to avoid the use of too many M) = Wohip W

indexes, we assume that= 2 in the following. The results

can easily be generalized to any valuelof The following

generalizes in a non-trivial way the results of [10].

inwhichDy, ..., Dg are diagonal. This yields in terms of the

(MR):,:,T = W-. AR,T‘ : WT Vr (19)

Theorem 1 Consider the mappin@ : (X,Y,Z) € C/%7 x inwhich A, ., ..., Ar,, 1 <r < R, are diagonal. The ma-
CI¥7 % CI*7 — ®(X,Y, Z) € CIXIXIxIxIx] defined by trix W can be obtained from (19) by means of any algorithm

for joint-diagonalization by congruence of a set of masice

@S(bY’Z@?j’jm)",m. D (93 7) + %4 Do (w5 72) such as the extended QZ-iteration proposed in [12]. In the
st Do (o uk) — s Do o) 4 o Dy Cor ) following section we will show by simulation results how the
iyugm,ngrj-, Zk; - yi,mgl,ngzw Zk-g j: yi,ngumgzwk; ; crucial assumption that the setis linearly independent im-

Yi m,n(Zj,T — Yi,m nl(Zj, T Yin ,m\Zj,T . . .
Fzn Do (o) — 2em De (@ ) 4+ 21 o Deon @ i) plies in fact a new bound on the maximum number of users
F2iDm n (Y52x) = 2i,m Di,n (Y5, @) + 2i,n Diym (5, k) R, that is significantly more relaxed than (9).

whereD,, . (Vj, 2k) = YjmZkn — YjnZkm- Then we have

®(X, X, X) — 0 if and only ifX is at most rank-2. Remark 1 For the rank-L detection, we start from the deter-

minants of the differertZ. + 1) x (L + 1) submatrices.
Proof: The entries ofb(X, X, X)/(3!) correspond to the

determinants of the differer{8 x 3) submatrices ofX. A 6. SIMULATION RESULTS
necessary and sufficient condition f8rto be at most rank-2,
is that all these determinants vanish. B In this section, we illustrate the performance of the bliad r

. ) o ceiver based on the tensor decomposition in terms of rank-
eaer?/Eaur?al\?g?rglrf?if)t = ®(E,, B, E,). Sincedistrilin- | 1y Fig. 2 shows the results obtained from 1000 Monte-
' ’ Carlo trials with Additive White Gaussian Noise (AWGN),
R . . . where/ = 6, J = 50 QPSK symbols,K = 4 antennas,
Proe =3 (W Hur(W s (W ued (Bu, By, Bu). (15) L = 2 interfering symbols and®? = 4 users. We evaluate,

w,v,w=1
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Fig. 2. Performance of the ALS and SD algorithms.
(1]

2
in terms of Symbol Error Rate (SER), the accuracy of the de-[ ]

composition in rank-(L,L,1) terms, calculated either by &\L
with one initialization or by SD. We compare to the perfor- [3]
mance of the Minimum Mean-Square Error (MMSE) estima-
tor which assumes perfect knowledge of the channel and thes)
antenna array response. It turns out that the performance of
the SD-based blind receiver is close to the MMSE receiver
(the gap between the two curves is only 2dB at SER=)

and outperforms the ALS-based blind receiver. Furthermore
the average time of calculation for SD with these parameters
is more thanl0 times lower than ALS (both have been com- g
pared under the same conditions). Note that we used only one
initialization for ALS, so the calculation of the mean SER (7]
takes the trials that converged to a local minimum into ac-
count. With a sufficient number of different initializations
(typically n 5), the ALS gives approximately the same [8]
mean-SER curve as SD but the computation time of ALS is
then10n times higher.

(5]

[9]
The following array gives the maximum number of users’

contributions that can be extracted, for different valuethe
parametersRﬁ,ffz) is the maximum value oR such that the [10]

sufficient condition for uniqueness (9) is still satisfi S,ﬂ)
has been numerically calculated as the maximum valu@ of

L : [11]
such that the sét is linearly independent. These results show
that the SD technique implies a new bound®rthat is sig-
nificantly more relaxed than (9). The mathematical proof forj12]
this new bound will be presented in a full paper version f thi

manuscript.
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7. CONCLUSION

In this paper, we have proposed to use the third-order ten-
sor decomposition in rank-(L,L,1) terms to build a power-
ful blind deterministic receiver with performance closetie
non-blind MMSE estimator. This receiver can deal with ISI,
under the assumption that the multipath reflectors are in the
far field. The standard way to compute this multilinear alge-
braic decomposition is an ALS algorithm, which sometimes
converges slowly and is sensitive to local minima. We have
shown that it is possible to compute this decomposition by
an SD algorithm. This approach is less time-consuming than
ALS, more accurate and implies a new bound on the number
of contributions that can be extracted.
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