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ABSTRACT

In this paper, we consider the problem of blind separation-
equalization of DS-CDMA signals, from convolutive mix-
tures received by an antenna array. We suppose that multi-
path reflections occur in the far-field of this array and that
Inter-Symbol-Interference is caused by large delay spread.
Our receiver is deterministic and relies on a third-order tensor
decomposition, called decomposition in rank-(L,L,1) terms,
which is a generalization of the well-known Parallel Factor
(PARAFAC) decomposition. The technique we propose to
calculate this decomposition is based on simultaneous matrix
diagonalization, which is more accurate than the standard Al-
ternating Least Squares (ALS) algorithm and also allows to
blindly identify more users than previously stated.

1. INTRODUCTION

Blind separation of signals impinging on an antenna array
is of paramount importance in many commercial and mili-
tary applications such as source localization, sensor calibra-
tion, and eavesdropping. Moreover, most of the blind prob-
lems in the literature are formulated in terms of second or-
der algebra and we refer to [1] and references therein for an
overview of the existing approaches. The authors of [2] were
the first to propose a multilinear algebraic approach to solve
the DS-CDMA multiuser blind separation-equalization prob-
lem. By fully exploiting the spatial, temporal and code diver-
sities, they have shown that the samples of the received signal
can be stored in a third-order tensor (i.e. a cube) that follows
the well-known PARAFAC model [3, 4]. Interestingly, the
deterministic blind PARAFAC DS-CDMA receiver does not
require knowledge of the channel, CDMA-codes, DOA cal-
ibration or statistical independence. However, this modelis
only valid if the multipath reflectors are in the far field of the
receive antenna array and if the delay spread is small (i.e. in
the order of a few chips), such that Inter-Symbol-Interference
(ISI) can be avoided by adopting a “guard chips” or a “discard
prefix” strategy.

In this paper, we focus on the more complex situation with
ISI caused by large delay spread (i.e. more than one symbol

period). We show that the problem can be solved by a decom-
position in rank-(L,L,1) terms of the tensor of observations.
This multilinear model [5,6] is a generalization of PARAFAC.
Moreover, the technique proposed in [5, 6] to calculate this
decomposition is an Alternating Least Squares (ALS) algo-
rithm, which is known to be sensitive to local minima and
sometimes needs a large number of iterations to converge. We
derive here a Simultaneous Diagonalization (SD) algorithm
that outperforms ALS and also allows to extract more users’
contributions than previously stated.

The article is organized as follows: in Section 2, we recall
the discrete-time instantaneous and convolutive data models
for the received signal. In Section 3, we introduce some mul-
tilinear algebra prerequisites. In Section 4, we discuss the
PARAFAC decomposition of a third-order tensor and the de-
composition in rank-(L,L,1) terms. In Section 5, we develop
a Simultaneous Diagonalization (SD) algorithm to compute
the decomposition in rank-(L,L,1) terms. In Section 6, we
illustrate the performance by simulation results.

2. DATA MODEL: ANALYTIC FORM

2.1. Instantaneous model

Let us considerR users transmitting at the same time within
the same bandwidth, frames ofJ symbols spread by DS-
CDMA codes of lengthI, towards an array ofK antennas. In
a direct-path only propagation scenario, the assumption that
the channel is noiseless and memoryless leads to the follow-
ing instantaneous data model without Inter-Chip-Interference:

yijk =

R
∑

r=1
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(r)
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(r)
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(r)
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whereyijk is the sample of the signal received by thekth

antenna at theith chip-sampling instant within thejth symbol
period. The scalara(r)

k is the fading factor between userr and

antenna elementk, s
(r)
j is thejth symbol transmitted by the

rth user andc(r)
i is theith chip of the CDMA code assigned

to userr.



2.2. Convolutive model

We now consider a multipath propagation scenario with large
delay spread. We assume that for a given user, the multipath
channel is the same for all antennas, up to a multiplicative
fading factora(r)

k , which is valid when the multipath reflectors

are in the far field of the antennas [2,7]. If we denote byx
(r)
ijk

the ith chip of the signal received by thekth antenna during
thejth symbol period for therth user, we get:

x
(r)
ijk = a

(r)
k

L
∑

l=1

h(r)(i + (l − 1)I) s
(r)
j−l+1, (2)

whereh(r) contains the coefficients obtained by convolution
between the impulse response of therth channel and therth

CDMA code. L is the number of interfering symbols. So
h(r)(i + (l − 1)I) is the coefficient of the overall impulse re-
sponse at the chip rate corresponding to theith chip and the
lth interfering symbol. We finally get the expression for one
sample of the overall received signal by summing the contri-
butions ofR users:

yijk =

R
∑

r=1

a
(r)
k

L
∑

l=1

h(r)(i + (l − 1)I) s
(r)
j−l+1. (3)

3. MULTILINEAR ALGEBRA PREREQUISITES

Definition 1. (Tensor) A multi-way array of which the
elements are addressed byN indices is anN th-order tensor.

Definition 2. (Mode-n product) The mode-1 product of
a third-order tensorY ∈ CL×M×N by a matrixA∈ C

I×L,
denoted byY •1 A, is an (I × M × N )-tensor with elements
defined, for all index values, by

(Y •1 A)imn =

L
∑

l=1

ylmnail

Similarly, the mode-2 product ofY by a matrixB∈ C
J×M

and the mode-3 product byC∈ C
K×N are the (L × J × N )

and (L×M ×K) tensors, respectively, with elements defined
by

(Y •2 B)ljn =

M
∑

m=1

ylmnbjm

(Y •3 C)lmk =

N
∑

n=1

ylmnckn

In this notation, the matrix productY = U ·S ·VT takes
the form ofY = S •1 U •2 V.

Definition 3. (Rank-1 Tensor) The third-order tensor
Y ∈ CI×J×K is rank-1 if its elements can be written as
yijk = aibjck, wherea ∈ CI×1, b ∈ CJ×1 andc ∈ CK×1.

This definition generalizes the definition of a rank-1 ma-
trix: A ∈ CI×J has rank1 if A = a · bT .

Definition 4. (Tensor Rank)The rank ofY is defined as
the minimum number of rank-1 tensors yieldingY in a linear
combination.

Definition 5. (Kruskal Rank of a Matrix) The Kruskal
rank of a matrixA, denoted byk(A), is defined as the maxi-
mal numberk such thatany set ofk columns ofA is linearly
independent[8].

4. TENSOR DECOMPOSITIONS

4.1. PARAFAC Decomposition

The PARAllel FACtor (PARAFAC) model or CANonical ten-
sor DECOMPosition (CANDECOMP) was independently in-
troduced in [4] and [9]. It aims at decomposing a tensor as a
linear combination of a minimal numberR of rank-1 tensors.
Let Y be an(I × J × K) tensor, with elements denoted by
yijk. The PARAFAC decomposition ofY can be written as

yijk =

R
∑

r=1

a
(r)
i b

(r)
j c

(r)
k , (4)

wherea
(r), b

(r), c
(r) are therth columns of matricesA ∈

CI×R, B ∈ CJ×R andC ∈ CK×R respectively, and where
i, j andk denote the row index. In [8], Kruskal proved that
the PARAFAC decomposition (4) is unique (up to some trivial
indeterminacies) if

k(A) + k(B) + k(C) ≥ 2(R + 1). (5)

In [2], the authors established the link between this de-
composition and the data model of Eq. (1). In fact, this equa-
tion can be seen as a PARAFAC decomposition of the tensor
of observationsY ∈ CI×J×K , where each user contribution
is characterized by a rank-1 tensor. Eq. (5) should be seen
as a bound onR guaranteeing uniqueness of the decompo-
sition. In the next subsection, we show how the convolutive
data model of Eq. (3) can algebraically be written as the de-
composition in rank-(L,L,1) terms of the third-order tensor of
observations.

4.2. Decomposition in rank-(L,L,1) terms

From Eq. (2), for a given user (indexr fixed) and for a given
antenna (indexk fixed),x(r)

ijk can be considered as an element
of the following (I × J) matrixXkr

Xkr = a
(r)
k (Hr •2 Sr) , (6)

whereHr is the (I × L) matrix with elements defined by
(Hr)i,l = h(r)(i+(l−1)I) andSr is the (J×L) Toeplitz ma-

trix with elements defined by(Sr)j,l = s
(r)
j−l+1, i = 1 . . . I,

j = 1 . . . J andl = 1 . . . L.
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Fig. 1. Schematic representation of the decomposition in
rank-(L,L,1) terms

For a given userr, and for all values of indexesi, j, k and
l, the samplex(r)

ijk can thus be stored in the following third-
order tensorXr ∈ CI×J×K :

Xr = Hr •2 Sr •3 ar, (7)

whereXr represents the global contribution from a single
user, andar is the (K × 1) vector that contains the fading
factorsa(r)

k for theK antennas. Finally, we considerR users
transmitting at the same time, so we obtain the following ten-
sor equivalent of (3) after summing theR contributions:

Y =
R

∑

r=1

Hr •2 Sr •3 ar. (8)

Equation (8) stands for the decomposition ofY in a sum of
rank-(L,L,1) terms [5, 6], and is visualized in Fig. 1. Note
that if the delay spread is small (no ISI), i.e.,L = 1, Eq. (8)
is equivalent to PARAFAC.

A generic sufficient condition for uniqueness of this de-
composition has been derived in [6]:
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+ min (K, R) ≥ 2R + 2, (9)

which implies an upper bound on the number of users that can
be allowed at the same time. LetH, S andA be the matrices
of size (I×LR), (J×LR) and (K×R), respectively resulting
from the concatenation ofHr, Sr andar , r = 1 . . . R. From
the knowledge of the tensor of observationsY only, the cal-
culation of the decomposition in rank-(L,L,1) terms consists
of the blind estimation of these matrices by minimization of
the quadratic cost function

φ(H,S,A) = ‖Y −

R
∑

r=1

Ĥr •2 Ŝr •3 âr‖
2.

This can be done by means of an Alternating Least Squares
(ALS) algorithm [5, 6]. However, this algorithm can be slow
and it is sensitive to local minima. Several initializations are
thus often needed to find a reliable solution, which increases
the computational cost. With respect to this problem, a Si-
multaneous Diagonalization technique is very attractive.

5. SIMULTANEOUS DIAGONALIZATION

Simultaneous diagonalization (SD) of a set of matrices has
become a popular tool in blind signal separation. In [10, 11],
the authors have derived a SD algorithm for the PARAFAC
decomposition, that outperforms ALS. Moreover, they have
shown that this approach implies a new bound onR that is
significantly more relaxed than (5). In this section, we gener-
alize the SD technique to the calculation of the decomposition
in rank-(L,L,1) terms. We make the following assumptions on
the dimensions:







I ≥ L
J ≥ L

min(IJ, K) ≥ R
. (10)

Consider an(I × J × K) tensorY of which the decom-
position in rank-(L,L,1) terms is given by

Y =

R
∑

r=1

Xr •3 ar,

in which the (I × J) matricesXr result from

Xr = Hr •2 Sr = Hr · S
T
r .

Let us build the matrixY ∈ CJI×K in which the entries
of Y are stacked as follows:

(Y)(j−1)I+i,k = yijk.

This matrix can be seen as the result of row-wise concatena-
tion of theJ matrices(Y):,j,: of size (I × K). According
to the multilinear model under consideration, this matrix can
also be written as:

Y =
(

vec(X1) · · · vec(XR)
)

· AT = X̃ ·AT , (11)

where the operatorvec builds a vector from a matrix by stack-
ing the columns of this matrix one above the other. Under
the assumption (10), we can expect the rank ofHr ∈ CI×L,
Sr ∈ CJ×L andXr ∈ CI×J to be equal toL. Moreover, we
can expect the rank of̃X ∈ CJI×R andA ∈ CK×R to be
equal toR, which implies that the rank ofY is R. Consider
then the “economy size” SVD ofY:

Y = U · Σ · VH , (12)

in which U ∈ CJI×R andV ∈ CK×R are column-wise or-
thonormal matrices and in whichΣ ∈ CR×R is positive di-
agonal.

If we put E = U · Σ, then we deduce from (11) and
(12), that there exists an a priori unknown non-singular matrix
W ∈ CR×R that satisfies:

{

X̃ = E ·W
A

T = W
−1 ·VH . (13)



It is sufficient to estimate the matrixW to findH, S andA.
Obviously,A = V

∗ · W−T . Furthermore, the columns of
E ·W correspond to the vectorized representation of the (I ×
J) matricesXr = Hr · ST

r of rank-L. Thus, the columns of
Hr can be estimated as theL left singular vectors associated
with theL largest singular values ofXr. The matrixSr then
corresponds to the product of the firstL singular values and
theL associated right singular vectors.

The task is now to findW that satisfies (13). From the
matrixE ∈ CJI×R, we build the set of matricesE1, . . . ,ER ∈
CI×J , defined by

Er = unvec((E):,r),

where(E):,r is therth column ofE andunvec is the operator
that stacks the entries of a (JI × 1) vectoru in an (I × J)
matrixU as follows:(U)i,j = (u)(j−1)I+i. We thus have

Er = unvec((X̃ ·W−1):,r)

=

R
∑

k=1

(Hr · S
T
r )(W−1)kr. (14)

This means that the matricesEr consist of linear combi-
nations of the rank-L matricesXr = Hr · ST

r . Turned the
other way around, we now have to find the linear combina-
tions of the matricesEr that yield rank-L matrices, because
the coefficients of these linear combinations will yield thema-
trix W we are looking for. To solve this problem, we need a
tool that allows us to determine whether a matrix is rank-L or
not.

For the sake of clarity and to avoid the use of too many
indexes, we assume thatL = 2 in the following. The results
can easily be generalized to any value ofL. The following
generalizes in a non-trivial way the results of [10].

Theorem 1 Consider the mappingΦ : (X, Y, Z) ∈ CI×J ×
CI×J × CI×J → Φ(X, Y, Z) ∈ CI×I×I×J×J×J defined by

(Φ(X, Y, Z))ijklmn

= xilDm,n(yj, zk) − xi,mDl,n(yj , zk) + xi,nDl,m(yj , zk)
+xilDm,n(zj , yk) − xi,mDl,n(zj, yk) + xi,nDl,m(zj , yk)
+yilDm,n(xj, zk) − yi,mDl,n(xj, zk) + yi,nDl,m(xj , zk)
+yilDm,n(zj , xk) − yi,mDl,n(zj, xk) + yi,nDl,m(zj , xk)
+zilDm,n(xjyk) − zi,mDl,n(xj, yk) + zi,nDl,m(xj , yk)
+zilDm,n(yjxk) − zi,mDl,n(yj, xk) + zi,nDl,m(yj , xk)

,

whereDm,n(yj , zk) = yjmzkn − yjnzkm. Then we have
Φ(X,X,X) = 0 if and only ifX is at most rank-2.

Proof: The entries ofΦ(X,X,X)/(3!) correspond to the
determinants of the different(3 × 3) submatrices ofX. A
necessary and sufficient condition forX to be at most rank-2,
is that all these determinants vanish.

Let us introducePrst = Φ(Er,Es,Et). SinceΦ is trilin-
ear, we have from (14) :

Prst =
R

X

u,v,w=1

(W−1)ur(W−1)vs(W−1)wtΦ (Eu, Ev , Ew) . (15)

Assume at this point that there exists a symmetric third-order
tensorM of which the entriesmrst satisfy the following set
of homogeneous linear equations (we will justify this assump-
tion below):

R
∑

r,s,t=1

mrstPrst = 0. (16)

We define the setP = {Φ (Eu, Ev, Ev) | 1 6 u 6= v 6

R} ∪ {Φ (Eu, Ev, Ew) |1 6 u < v < w 6 R}. If P is
linearly independent, then after substitution of (15) in (16)
and using the symmetry ofΦ andM, we can show thatW is
solution of:

M = D •1 W •2 W •3 W, (17)

in which D is diagonal. Actually, we can show thatany di-
agonal tensorD generates a tensorM that satisfies Eq. (16).
Hence, ifP is linearly independent, the tensorsM form anR-
dimensional subspace of the symmetric(R×R×R) tensors.
Let {Mr} represent a basis of this subspace, known from the
kernel of the setP, cf. (16). We have:

M1 = D1 •1 W •2 W •3 W

...

MR = DR •1 W •2 W •3 W (18)

in whichD1, . . . ,DR are diagonal. This yields in terms of the
matrix slices ofM1, . . . ,MR:

(M1):,:,r = W · Λ1,r ·W
T

...

(MR):,:,r = W · ΛR,r · W
T ∀r (19)

in which Λ1,r, . . . , ΛR,r, 1 6 r 6 R, are diagonal. The ma-
trix W can be obtained from (19) by means of any algorithm
for joint-diagonalization by congruence of a set of matrices,
such as the extended QZ-iteration proposed in [12]. In the
following section we will show by simulation results how the
crucial assumption that the setP is linearly independent im-
plies in fact a new bound on the maximum number of users
R, that is significantly more relaxed than (9).

Remark 1 For the rank-L detection, we start from the deter-
minants of the different(L + 1) × (L + 1) submatrices.

6. SIMULATION RESULTS

In this section, we illustrate the performance of the blind re-
ceiver based on the tensor decomposition in terms of rank-
(L,L,1). Fig. 2 shows the results obtained from 1000 Monte-
Carlo trials with Additive White Gaussian Noise (AWGN),
whereI = 6, J = 50 QPSK symbols,K = 4 antennas,
L = 2 interfering symbols andR = 4 users. We evaluate,
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Fig. 2. Performance of the ALS and SD algorithms.

in terms of Symbol Error Rate (SER), the accuracy of the de-
composition in rank-(L,L,1) terms, calculated either by ALS
with one initialization or by SD. We compare to the perfor-
mance of the Minimum Mean-Square Error (MMSE) estima-
tor which assumes perfect knowledge of the channel and the
antenna array response. It turns out that the performance of
the SD-based blind receiver is close to the MMSE receiver
(the gap between the two curves is only 2dB at SER=10−4)
and outperforms the ALS-based blind receiver. Furthermore,
the average time of calculation for SD with these parameters
is more than10 times lower than ALS (both have been com-
pared under the same conditions). Note that we used only one
initialization for ALS, so the calculation of the mean SER
takes the trials that converged to a local minimum into ac-
count. With a sufficient numbern of different initializations
(typically n = 5), the ALS gives approximately the same
mean-SER curve as SD but the computation time of ALS is
then10n times higher.

The following array gives the maximum number of users’
contributions that can be extracted, for different values of the
parameters.R(SC)

max is the maximum value ofR such that the
sufficient condition for uniqueness (9) is still satisfied.R

(SD)
max

has been numerically calculated as the maximum value ofR
such that the setP is linearly independent. These results show
that the SD technique implies a new bound onR, that is sig-
nificantly more relaxed than (9). The mathematical proof for
this new bound will be presented in a full paper version of this
manuscript.

I J K L R
(SC)
max R

(SD)
max

4 4 8 2 2 4
4 5 8 2 2 5
4 6 8 2 3 7

7. CONCLUSION

In this paper, we have proposed to use the third-order ten-
sor decomposition in rank-(L,L,1) terms to build a power-
ful blind deterministic receiver with performance close tothe
non-blind MMSE estimator. This receiver can deal with ISI,
under the assumption that the multipath reflectors are in the
far field. The standard way to compute this multilinear alge-
braic decomposition is an ALS algorithm, which sometimes
converges slowly and is sensitive to local minima. We have
shown that it is possible to compute this decomposition by
an SD algorithm. This approach is less time-consuming than
ALS, more accurate and implies a new bound on the number
of contributions that can be extracted.
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