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1. Introduction.

1.1. Organization of the paper. In the companion paper [11] we introduce
decompositions of a higher-order tensor in several types of block terms. In the present
paper we propose alternating least squares (ALS) algorithms for the computation of
these different decompositions.

In the following subsections we first explain our notation and introduce some
basic definitions. In section 1.4 we briefly recall the Tucker decomposition/higher-
order singular value decomposition (HOSVD) [40, 41, 6, 7, 8] and also the Canonical/
Parallel Factor (CANDECOMP/PARAFAC) decomposition [3, 15] and explain how
they can be computed.

In section 2 we present an ALS algorithm for the computation of the decomposi-
tion in rank-(Lr, Lr, 1) terms. In section 3 we discuss the decomposition in rank-
(L,M,N) terms. Section 4 deals with the type-2 decomposition in rank-(L,M, ·)
terms. Section 5 is a note on degeneracy.

1.2. Notation. We use K to denote R or C when the difference is not important.
In this paper scalars are denoted by lowercase letters (a, b, . . . ), vectors are written in
boldface lowercase (a, b, . . . ), matrices correspond to boldface capitals (A, B, . . . ),
and tensors are written as calligraphic letters (A, B, . . . ). This notation is consistently
used for lower-order parts of a given structure. For instance, the entry with row index
i and column index j in a matrix A, i.e., (A)ij , is symbolized by aij (also (a)i = ai
and (A)ijk = aijk). If no confusion is possible, the ith column vector of a matrix A
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1068 LIEVEN DE LATHAUWER AND DIMITRI NION

is denoted as ai, i.e., A = [a1 a2 . . .]. Sometimes we will use the MATLAB colon
notation to indicate submatrices of a given matrix or subtensors of a given tensor.
Italic capitals are also used to denote index upper bounds (e.g., i = 1, 2, . . . , I). The
symbol ⊗ denotes the Kronecker product,

A ⊗ B =

⎛
⎜⎝

a11B a12B . . .
a21B a22B . . .

...
...

⎞
⎟⎠ .

Let A = [A1 . . . AR] and B = [B1 . . . BR] be two partitioned matrices. Then the
Khatri–Rao product is defined as the partitionwise Kronecker product and represented
by � [34]:

(1.1) A � B = (A1 ⊗ B1 . . .AR ⊗ BR) .

In recent years, the term “Khatri–Rao product” and the symbol � have mainly been
used in the case where A and B are partitioned into vectors. For clarity, we denote
this particular, columnwise, Khatri–Rao product by �c:

A �c B = (a1 ⊗ b1 . . .aR ⊗ bR) .

The superscripts ·T , ·H , and ·† denote the transpose, complex conjugated transpose,
and Moore–Penrose pseudoinverse, respectively. The operator diag(·) stacks its scalar
arguments in a square diagonal matrix. Analogously, blockdiag(·) stacks its vector
or matrix arguments in a block-diagonal matrix. The (N × N) identity matrix is
represented by IN×N . 1N is a column vector of all ones of length N . The zero tensor
is denoted by O.

1.3. Basic definitions.
Definition 1.1. Consider T ∈ K

I1×I2×I3 and A ∈ K
J1×I1 , B ∈ K

J2×I2 , C ∈
K

J3×I3 . Then the Tucker mode-1 product T •1A, mode-2 product T •2B, and mode-3
product T •3 C are defined by

(T •1 A)j1i2i3 =

I1∑
i1=1

ti1i2i3aj1i1 ∀j1, i2, i3,

(T •2 B)i1j2i3 =

I2∑
i2=1

ti1i2i3bj2i2 ∀i1, j2, i3,

(T •3 C)i1i2j3 =

I3∑
i3=1

ti1i2i3cj3i3 ∀i1, i2, j3,

respectively [5].
In this paper we denote the Tucker mode-n product in the same way as in [4]; in

the literature the symbol ×n is sometimes used [6, 7, 8].
Definition 1.2. The Frobenius norm of a tensor T ∈ K

I×J×K is defined as

‖T ‖ =

⎛
⎝ I∑

i=1

J∑
j=1

K∑
k=1

|tijk|2
⎞
⎠

1
2

.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BLOCK TERMS—III 1069

Definition 1.3. The outer product A ◦ B of a tensor A ∈ K
I1×I2×...×IP and a

tensor B ∈ K
J1×J2×...×JQ is the tensor defined by

(A ◦ B)i1i2...iP j1j2...jQ = ai1i2...iP bj1j2...jQ

for all values of the indices.
For instance, the outer product T of three vectors a, b, and c is defined by

tijk = aibjck for all values of the indices.
Definition 1.4. A mode-n vector of a tensor T ∈ K

I1×I2×I3 is an In-dimensional
vector obtained from T by varying the index in and keeping the other indices fixed [19].

Mode-n vectors generalize column and row vectors.
Definition 1.5. The mode-n rank of a tensor A is the dimension of the subspace

spanned by its mode-n vectors.
The mode-n rank of a higher-order tensor is the obvious generalization of the

column (row) rank of a matrix.
Definition 1.6. A third-order tensor is rank-(L,M,N) if its mode-1 rank, mode-

2 rank, and mode-3 rank are equal to L, M , and N , respectively.
A rank-(1, 1, 1) tensor is briefly called rank-1. The rank of a tensor is now defined

as follows.
Definition 1.7. The rank of a tensor T is the minimal number of rank-1 tensors

that yield T in a linear combination [24].
It will be useful to write tensor expressions in terms of matrices or vectors. We

therefore define standard matrix and vector representations of a third-order tensor.
Definition 1.8. The standard (JK×I) matrix representation (T )JK×I = TJK×I ,

(KI×J) representation (T )KI×J = TKI×J , and (IJ×K) representation (T )IJ×K =
TIJ×K of a tensor T ∈ K

I×J×K are defined by

(TJK×I)(j−1)K+k,i = (T )ijk,

(TKI×J)(k−1)I+i,j = (T )ijk,

(TIJ×K)(i−1)J+j,k = (T )ijk

for all values of the indices [19]. The standard (IJK×1) vector representation (T )IJK =
tIJK of T is defined by

(tIJK)(i−1)JK+(j−1)K+k = (T )ijk

for all values of the indices.
Note that in these definitions indices to the right vary more rapidly than indices

to the left. Further, the kth (I × J) matrix slice of T ∈ K
I×J×K will be denoted as

TI×J,k.

1.4. HOSVD and PARAFAC. We have now enough material to introduce
the HOSVD [6, 7, 8] and PARAFAC [15] decompositions.

Definition 1.9. A HOSVD of a tensor T ∈ K
I×J×K is a decomposition of T of

the form

(1.2) T = D •1 A •2 B •3 C

in which
• the matrices A ∈ K

I×L, B ∈ K
J×M and C ∈ K

K×N are columnwise or-
thonormal,
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• the core tensor D ∈ K
L×M×N is

− all-orthogonal,

〈DM×N,l1 ,DM×N,l2〉 = trace(DM×N,l1 · DH
M×N,l2) = σ

(1)2

l1
δl1,l2 ,

1 � l1, l2 � L,

〈DN×L,m1 ,DN×L,m2〉 = trace(DN×L,m1
· DH

N×L,m2
) = σ(2)2

m1
δm1,m2

,

1 � m1,m2 � M,

〈DI×J,n1 ,DI×J,n2〉 = trace(DL×M,n1 · DH
L×M,n2

) = σ(3)2

n1
δn1,n2

,

1 � n1, n2 � N ;

− ordered,

σ
(1)2

1 � σ
(1)2

2 � . . . � σ
(1)2

L � 0,

σ
(2)2

1 � σ
(2)2

2 � . . . � σ
(2)2

M � 0,

σ
(3)2

1 � σ
(3)2

2 � . . . � σ
(3)2

N � 0.

Equation (1.2) can be written in terms of the standard (JK × I), (KI × J), and
(IJ ×K) matrix representations of T as follows:

TJK×I = (B ⊗ C) · DMN×L · AT ,(1.3)

TKI×J = (C ⊗ A) · DNL×M · BT ,(1.4)

TIJ×K = (A ⊗ B) · DLM×N · CT .(1.5)

This decomposition is a specific instance of the Tucker decomposition, introduced
in [40, 41]; columnwise orthonormality of A, B, C and all-orthogonality and ordering
of D were suggested in the computational strategy in [40, 41]. The decomposition exists
for any T ∈ K

I×J×K . The matrices A, B, and C can be computed as the matrices of
right singular vectors associated with the nonzero singular values of TJK×I , TKI×J ,
and TIJ×K , respectively. The core tensor is then given by D = T •1 AH •2 BH •3 CH .
The values L, M , and N correspond to the rank of TJK×I , TKI×J , and TIJ×K , i.e.,
they are equal to the mode-1, mode-2, and mode-3 rank of T , respectively. Given the
way (1.2) can be computed, it comes as no surprise that the SVD of matrices and the
HOSVD of higher-order tensors have some analogous properties [6].

Define D̃ = D •3 C. Then

(1.6) T = D̃ •1 A •2 B

is a (normalized) Tucker-2 decomposition of T .
We are often interested in the best approximation of a given tensor T by a tensor

of which the mode-1 rank, mode-2 rank, and mode-3 rank are upper-bounded by
L, M , and N , respectively. Formally, we want to find (A,B,C,D) such that T̂ =
D •1 A •2 B •3 C minimizes the least-squares cost function f(T̂ ) = ‖T − T̂ ‖2. One
difference between matrices and tensors is that this optimal approximation cannot in
general be obtained by simple truncation of the HOSVD. The algorithms discussed
in [7, 8, 14, 17, 20, 21, 22, 23, 44] aim at finding the optimal approximation. These
algorithms can be initialized with the approximation obtained by truncation.

Besides the HOSVD, there exist other ways to generalize the SVD of matrices.
The most well known is CANDECOMP/PARAFAC [3, 15].
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Definition 1.10. A canonical or parallel factor decomposition (CANDE-
COMP/PARAFAC) of a tensor T ∈ K

I×J×K is a decomposition of T as a linear
combination of rank-1 terms:

(1.7) T =
R∑

r=1

ar ◦ br ◦ cr.

In terms of the standard matrix representations of T , decomposition (1.7) can be
written as

TJK×I = (B �c C) · AT ,(1.8)

TKI×J = (C �c A) · BT ,(1.9)

TIJ×K = (A �c B) · CT .(1.10)

In terms of the (IJK×1) vector representation of T , the decomposition can be written
as

(1.11) TIJK = (A �c B �c C) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠ .

PARAFAC components are usually estimated by minimization of the quadratic
cost function

(1.12) f(A,B,C) = ‖T −
R∑

r=1

ar ◦ br ◦ cr‖2.

This is most often done by means of an ALS algorithm, in which the vectors are up-
dated mode per mode [3, 37]. Since PARAFAC is trilinear in its arguments, updating
A, given B and C, is just a linear least squares problem. The same holds for updating
B, given A and C, and updating C, given A and B. The algorithm is outlined in
Table 1.1. The normalization of B and C, in steps 2 and 3, respectively, is meant to
avoid over- and underflow. Scaling factors are absorbed in the matrix A. Note that
the matrices B �c C, C �c A, and A �c B have to have at least as many rows as
columns and that they have to be full column rank.

ALS iterations are sometimes slow. In addition, it is sometimes observed that the
algorithm moves through a “swamp”: the algorithm seems to converge, but then the
convergence speed drastically decreases and remains small for several iteration steps,
after which it may suddenly increase again. Recently, it has been understood that
the multilinearity of PARAFAC allows for the determination of the optimal step size,
which improves convergence [33].

In many applications one can assume that A and B are full column rank (this
implies that R � min(I, J)) and that C does not contain collinear vectors. Assume
for convenience that the values c21, . . . , c2R are nonzero, such that TI×J,2 is rank-
R, and that the values c11/c21, . . . , c1R/c2R are mutually different. (If this is not
the case, then we can consider linear combinations of slices such that the following
reasoning applies.) Then A follows from the eigenvalue decomposition (EVD) TI×J,1 ·
T†

I×J,2 = A · diag(c11/c21, . . . , c1R/c2R) · A†. In other words, the columns of (AT )†

are generalized eigenvectors of the pencil (TT
I×J,1,T

T
I×J,2); see [1, 13] and references

therein. After having found A, matrix B may, up to a scaling of its columns, be
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Table 1.1

ALS algorithm for CANDECOMP/PARAFAC.

- Initialize B, C
- Iterate until convergence:

1. Update A:

A←
[
(B�c C)† ·TJK×I

]T

2. Update B:

B̃ =
[
(C�c A)† ·TKI×J

]T

For r = 1, . . . , R: br ← b̃r/‖b̃r‖
3. Update C:

C̃ =
[
(A�c B)† ·TIJ×K

]T

For r = 1, . . . , R: cr ← c̃r/‖c̃r‖

obtained from (A† ·TI×J,2)
T = B·diag(c21, . . . , c2R). Matrix C may then be computed

as
[
(A �c B)† · TIJ×K

]T
. The EVD solution may subsequently be used to initialize

the ALS algorithm. This approach has been proposed in [2, 26, 35, 36].
From a numerical point of view, it is preferable to take all the matrix slices

of T into account, instead of only two of them. We therefore proposed to compute
the solution by means of simultaneous matrix diagonalization in [9]. It was shown
in [10] that the solution can still be obtained by means of a simultaneous matrix
diagonalization when T is tall in its third mode (meaning that R � K) and R(R−1) �
I(I − 1)J(J − 1)/2.

In [32] a Gauss–Newton method is described, in which all the factors are up-
dated simultaneously; in addition, the inherent indeterminacy of the decomposition
has been fixed by adding a quadratic regularization constraint on the component en-
tries. Instead of the least squares error (1.12), one can also minimize the least absolute
error. To this end, an alternating linear programming algorithm as well as a weighted
median filtering iteration are derived in [42].

2. Decomposition in rank-(Lr, Lr, 1) terms.

2.1. Definition.
Definition 2.1. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(Lr, Lr, 1) terms, 1 � r � R, is a decomposition of T of the form

(2.1) T =

R∑
r=1

(Ar · BT
r ) ◦ cr,

in which the matrix Ar ∈ K
I×Lr and the matrix Br ∈ K

J×Lr are rank-Lr, 1 � r � R.
Define A = [A1 . . .AR], B = [B1 . . .BR], C = [c1 . . . cR]. In terms of the standard

matrix representations of T , (2.1) can be written as

TIJ×K = [(A1 �c B1)1L1 . . . (AR �c BR)1LR
] · CT ,(2.2)

TJK×I = (B � C) · AT ,(2.3)

TKI×J = (C � A) · BT .(2.4)
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Table 2.1

ALS algorithm for decomposition in rank-(Lr, Lr, 1) terms.

- Initialize B, C
- Iterate until convergence:

1. Update A:

A←
[
(B�C)† ·TJK×I

]T

2. Update B:

B̃ =
[
(C�A)† ·TKI×J

]T

For r = 1, . . . , R: QR-factorization: B̃r = QR, Br ← Q
3. Update C:

C̃ =
{
[(A1 �c B1)1L1

. . . (AR �c BR)1LR
]† ·TIJ×K

}T

For r = 1, . . . , R: cr ← c̃r/‖c̃r‖

2.2. Algorithm. Like PARAFAC, the decomposition in rank-(Lr, Lr, 1) terms
is trilinear in the component matrices A, B, and C. This means that updating A,
given B and C, is just a linear least squares problem. The same holds for updating B,
given A and C, and updating C, given A and B. The update rules follow directly from
(2.2)–(2.4). The algorithm is outlined in Table 2.1. The normalization in steps 2 and 3
are meant to avoid under- and overflow. Moreover, the normalization in step 2 prevents
the submatrices of B from becoming ill-conditioned. Analogous to the situation for
PARAFAC, the matrices B�c C, C�c A, and [(A1 �c B1)1L1

. . . (AR �c BR)1LR
]

have to have at least as many rows as columns and have to be full column rank.

If A and B are full column rank and C does not have collinear vectors, then this
algorithm may be initialized by means of a (generalized) EVD, as explained in the
proof of [11, Theorem 4.1].

2.3. Numerical experiments. We generate tensors T̃ ∈ C
5×6×5 in the follow-

ing way:

(2.5) T̃ =
T

‖T ‖ + σN
N
‖N‖ ,

in which T can be decomposed as in (2.1). We consider R = 3 rank-(2, 2, 1) terms, i.e.,
Ar ∈ C

5×2, Br ∈ C
6×2, Cr ∈ C

6×1, 1 � r � 3. The decomposition of T is essentially
unique by [11, Theorem 4.4]. The second term in (2.5) is a noise term. The entries
of A, B, C and N are drawn from a zero-mean unit-variance Gaussian distribution.
The parameter σN controls the noise level.

A Monte Carlo experiment consisting of 200 runs was carried out. The algorithm
was initialized with three random starting values.

The accuracy is measured in terms of the relative error e = ‖C − Ĉ‖/‖C‖, in

which Ĉ is the estimate of C, optimally ordered and scaled. The median results are
plotted in Figure 2.1. We plot the median instead of the mean because, in some of the
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Fig. 2.1. Median relative error obtained in the first experiment in section 2.3.

runs, the convergence became too slow for the algorithm to find a sufficiently accurate
estimate in a reasonable time.

In a second experiment, we generate tensors T̃ ∈ C
10×10×10 as in (2.5). We

consider R = 5 rank-(2, 2, 1) terms, i.e., Ar ∈ C
10×2, Br ∈ C

10×2, Cr ∈ C
10×1,

1 � r � 5. The five rank-(2, 2, 1) terms are scaled such that their Frobenius norm
equals 1, 3.25, 5.5, 7.75, and 10, respectively. The fact that there is a difference of 20
dB between the strongest and the weakest term makes this problem quite hard. The
decomposition of T is essentially unique by [11, Theorem 4.1]. In Figure 2.2 we show
the median accuracy obtained when the algorithm in Table 2.1 is initialized (i) by
means of a (generalized) EVD, as explained in the proof of [11, Theorem 4.1], and (ii)
by means of a random starting value. It is clear that the global optimum is not found
when the algorithm is initialized randomly. However, the initialization by means of
a (generalized) EVD does lead to the global solution when the signal-to-noise ratio
(SNR) is sufficiently high. As a matter of fact, the (generalized) EVD yields the exact
solution when the data are noise-free.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

init by EVD

random init

− log σN

e

Fig. 2.2. Median relative error obtained in the second experiment in section 2.3.
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3. Decomposition in rank-(L, M, N) terms.

3.1. Definition.
Definition 3.1. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(L,M,N) terms is a decomposition of T of the form

(3.1) T =

R∑
r=1

Dr •1 Ar •2 Br •3 Cr,

in which Dr ∈ K
L×M×N are full rank-(L,M,N) and in which Ar ∈ K

I×L (with
I � L), Br ∈ K

J×M (with J � M), and Cr ∈ K
K×N (with K � N) are full column

rank, 1 � r � R.
Define partitioned matrices A = [A1 . . .AR], B = [B1 . . .BR], and C = [C1 . . .CR].

In terms of the standard matrix representations of T , (3.1) can be written as

TJK×I = (B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L) · AT ,(3.2)

TKI×J = (C � A) · blockdiag((D1)NL×M , . . . , (DR)NL×M ) · BT ,(3.3)

TIJ×K = (A � B) · blockdiag((D1)LM×N , . . . , (DR)LM×N ) · CT .(3.4)

In terms of the (IJK×1) vector representation of T , the decomposition can be written
as

(3.5) tIJK = (A � B � C) ·

⎛
⎜⎝

(D1)LMN

...
(DR)LMN

⎞
⎟⎠ .

3.2. Algorithm. The decomposition in rank-(L,M,N) terms is quadrilinear
in its factors A, B, C, and D. Hence, the conditional update of A, given B, C,
and D, is a linear least squares problem. The same holds for conditional updates
of B, C, and D. The update rules follow directly from (3.2)–(3.5). The algorithm is
outlined in Table 3.1. This algorithm is a generalization of the algorithm in [43] for the
computation of the best rank-(L,M,N) approximation of a given tensor. The matrices
(B�C) ·blockdiag((D1)MN×L, . . . , (DR)MN×L), (C�A) ·blockdiag((D1)NL×M , . . . ,
(DR)NL×M ), and (A � B) · blockdiag((D1)LM×N , . . . , (DR)LM×N ) have to have at
least as many rows as columns and have to be full column rank.

The order of the updates in Table 3.1 is not mandatory. We have observed in nu-
merical experiments that it is often advantageous to alternate between a few updates
of A and D, then alternate between a few updates of B and D, and so on.

3.3. Numerical experiments. We generate tensors T̃ ∈ C
5×5×7 as in (2.5).

The tensors T can now be decomposed as in (3.1). We consider R = 2 terms char-
acterized by Ar ∈ C

5×2, Br ∈ C
5×2, Cr ∈ C

7×3, and Dr ∈ C
2×2×3, 1 � r � 2. The

entries of Ar, Br, Cr, Dr, and N are drawn from a zero-mean unit-variance Gaussian
distribution. The decomposition of T is essentially unique by [11, Theorem 5.1].

A Monte Carlo experiment consisting of 200 runs was carried out. The algorithm
was initialized with three random starting values.

The accuracy is measured in terms of the relative error e = ‖C−Ĉ‖/‖C‖, in which

Ĉ is the estimate of C, of which the submatrices are optimally ordered and multiplied
from the right by a (3 × 3) matrix. The median results are plotted in Figure 3.1.

Next, we check what happens if the algorithm in Table 3.1 is used for the compu-
tation of the decomposition in rank-(L,L, 1) terms. In this case, the tensors Dr are of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1076 LIEVEN DE LATHAUWER AND DIMITRI NION

Table 3.1

ALS algorithm for decomposition in rank-(L,M,N) terms.

- Initialize B, C, D
- Iterate until convergence:

1. Update A:

Ã =
[
blockdiag((D1)†MN×L, . . . , (DR)†MN×L) · (B�C)† ·TJK×I

]T

For r = 1, . . . , R: QR-factorization: Ãr = QR, Ar ← Q
2. Update B:

B̃ =
[
blockdiag((D1)†NL×M , . . . , (DR)†NL×M ) · (C�A)† ·TKI×J

]T

For r = 1, . . . , R: QR-factorization: B̃r = QR, Br ← Q
3. Update C:

C̃ =
[
blockdiag((D1)†LM×N , . . . , (DR)†LM×N ) · (A�B)† ·TIJ×K

]T

For r = 1, . . . , R: QR-factorization: C̃r = QR, Cr ← Q
4. Update D:

⎛
⎜⎝

(D1)LMN

...
(DR)LMN

⎞
⎟⎠← (A�B�C)† · tIJK
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Fig. 3.1. Median relative error obtained in the first experiment in section 3.3.

dimension (L×L×1). The data are generated as in the first experiment in section 2.3.
We compare three algorithms: (i) the algorithm of Table 2.1, which we denote as Alg
(L,L, 1), (ii) the algorithm of Table 3.1, which we denote as Alg (L,M,N), and (iii)
a variant of the algorithm of Table 3.1 in which one alternates between a few updates
of A and D, then alternates between a few updates of B and D, and so on, as ex-
plained at the end of section 3.2. The latter algorithm is denoted as Alg (L,M,N)∗.
The inner iteration is terminated if the Frobenius norm of the difference between two
consecutive approximations of T drops below 1e−6, with a maximum of 10 inner iter-
ations. We observed that most of the time not more than two or three inner iterations
were carried out. We computed the results for one and two random initializations,
respectively.
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The median results for accuracy and computation time are plotted in Figures 3.2
and 3.3, respectively. From Figure 3.2 it is clear that Alg (L,M,N) does not find the
global optimum if it is initialized only once. One should perform inner iterations, or
initialize several times. However, both remedies increase the computational cost, as
is clear from Figure 3.3. Given that Alg (L,M,N) is by itself more expensive than
Alg (L,L, 1), we conclude that it is advantageous to compute the decomposition in
rank-(L,L, 1) terms by means of Alg (L,L, 1).
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Fig. 3.2. Median relative error obtained in the second experiment in section 3.3.
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Fig. 3.3. Median computation time in the second experiment in section 3.3.

4. Type-2 decomposition in rank-(L, M, ·) terms.

4.1. Definition.
Definition 4.1. A type-2 decomposition of a tensor T ∈ K

I×J×K in a sum of
rank-(L,M, ·) terms is a decomposition of T of the form

(4.1) T =
R∑

r=1

Cr •1 Ar •2 Br,

in which Cr ∈ K
L×M×K (with mode-1 rank equal to L and mode-2 rank equal to M),

and in which Ar ∈ K
I×L (with I � L) and Br ∈ K

J×M (with J � M) are full column
rank, 1 � r � R.
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Table 4.1

ALS algorithm for type-2 decomposition in rank-(L,M, ·) terms.

- Initialize B, C1, . . . , CR
- Iterate until convergence:

1. Update A:

Ã =
{
[(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L]† ·TJK×I

}T

For r = 1, . . . , R: QR-factorization: Ãr = QR, Ar ← Q
2. Update B:

B̃ =
{
[(C1 •1 A1)KI×M . . . (CR •1 AR)KI×M )]† ·TKI×J

}T

For r = 1, . . . , R: QR-factorization: B̃r = QR, Br ← Q
3. Update C1, . . . , CR: ⎛

⎜⎜⎝
(C1)(LM×K)

...
(CR)(LM×K)

⎞
⎟⎟⎠← (A�B)† ·TIJ×K

Define partitioned matrices A = [A1 . . .AR] and B = [B1 . . .BR]. In terms of
the standard matrix representations of T , (4.1) can be written as

TIJ×K = (A � B) ·

⎛
⎜⎝

(C1)(LM×K)

...
(CR)(LM×K)

⎞
⎟⎠ ,(4.2)

TJK×I = [(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L] · AT ,(4.3)

TKI×J = [(C1 •1 A1)KI×M . . . (CR •1 AR)KI×M ] · BT .(4.4)

4.2. Algorithm. Since the type-2 decomposition in rank-(L,M, ·) terms is tri-
linear in A, B, and C, an ALS algorithm consists of successive linear least squares
problems. The update rules for A, B, and C follow directly from (4.3), (4.4), and
(4.2), respectively. The algorithm is outlined in Table 4.1. The matrices A � B,
[(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L], and [(C1 •1 A1)KI×M . . . (CR •1 AR)KI×M ]
have to have at least as many rows as columns and have to be full column rank.

4.3. Numerical experiment. We generate tensors T̃ ∈ C
5×6×6 as in (2.5). The

tensors T can now be decomposed as in (4.1). We consider R = 3 terms characterized
by Ar ∈ C

5×2, Br ∈ C
6×2, and Cr ∈ C

2×2×6, 1 � r � 3. The entries of Ar, Br,
Cr, and N are drawn from a zero-mean unit-variance Gaussian distribution. The
decomposition of T is essentially unique by [11, Example 3].

A Monte Carlo experiment consisting of 200 runs was carried out. The algorithm
was initialized with three random starting values.

The accuracy is measured in terms of the relative error e = ‖B−B̂‖/‖B‖, in which

B̂ is the estimate of B, of which the submatrices are optimally ordered and multiplied
from the right by a (2 × 2) matrix. The median results are plotted in Figure 4.1.

5. Degeneracy. In the real field, PARAFAC algorithms sometimes show the
following behavior. The norm of individual terms in (1.12) goes to infinity, but these
terms almost completely cancel each other, such that the overall error continues to
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Fig. 4.1. Median relative error obtained in the experiment in section 4.3.

decrease. This phenomenon is known as “degeneracy” [16, 25, 27]. It is caused by the
fact that for R̃ � 2, the set

UR̃ = {T ∈ R
I×J×K |rank(T ) � R̃}

is not closed [12, 25, 38]. The set of tensors that are the sum of at most R̃ � 2
rank-(L,M,N) terms,

VR̃ = {T ∈ R
I×J×K |T decomposable as in (3.1), with R � R̃ and R̃ � 2},

is not closed either. We give an explicit example that is a straightforward generaliza-
tion of the example given for PARAFAC in [12]. Analogous results hold for the other
types of block term decompositions.

Let I1 ∈ R
4×2 and I2 ∈ R

4×2 consist of the first (resp., last) two columns of I4×4.
Consider the tensor E ∈ R

2×2×2 defined by

e111 = e221 = e122 = 1,

e121 = e211 = e112 = e212 = e222 = 0.

This tensor is rank-3 in R; see [5, pp. 21–22] and [18, section 3]. Now define T ∈ R
4×4×4

as follows:

T (1 : 2, 1 : 2, 1 : 2) = T (3 : 4, 3 : 4, 1 : 2) = T (1 : 2, 3 : 4, 3 : 4) = E ,
T (3 : 4, 1 : 2, 1 : 2) = T (3 : 4, 1 : 2, 3 : 4) = T (1 : 2, 3 : 4, 1 : 2)

= T (1 : 2, 1 : 2, 3 : 4) = T (3 : 4, 3 : 4, 3 : 4) = O2×2×2.

This tensor can be decomposed in three rank-(2, 2, 2) terms:

(5.1) T = E •1 I1 •2 I1 •3 I1 + E •1 I1 •2 I2 •3 I2 + E •1 I2 •2 I2 •3 I1.

However, it cannot be decomposed in two rank-(2, 2, 2) terms. We prove this by con-
tradiction. Assume that a decomposition in two rank-(2, 2, 2) terms does exist:

T = D1 •1 A1 •2 B1 •3 C1 + D2 •1 A2 •2 B2 •3 C2.(5.2)
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Fig. 5.1. Visualization of the degeneracy in Example 1. Left: evolution of the approximation
error. Right: evolution of the norm of the rank-(2, 2, 2) terms.

We can normalize this decomposition such that the first row of C = [C1 C2] is
equal to (1 0 1 0), and D1 •3 (1 0) = D2 •3 (1 0) = I2×2. Define A = [A1 A2] and
B = [B1 B2]. We have TI×J,1 = I4×4 = A · BT . Hence, A and B are nonsingular.
Define X = [x1 . . . x4] = A−1 and Y = [y1 . . . y4] = B−1. From (5.2) we have
that all the (I × J) slices of T̃ = T •1 X •2 Y are block-diagonal, consisting of two
(2 × 2) blocks. From the definition of T , we have that T̃I×J,4 = x1 · yT

4 . From the
block-diagonality of this rank-1 matrix follows that, without loss of generality, we can
assume that the third and fourth entries of x1 and y4 are zero. Further, we have that
T̃I×J,3 = x1 · yT

3 + x2 · yT
4 . From the block-diagonality of this rank-2 matrix and the

structure of x1 and y4 follows that the third and fourth entries of x2 and y3 are zero.
Finally, we have that T̃I×J,2 = x1 · yT

2 + x3 · yT
4 . From the block-diagonality of this

rank-2 matrix and the structure of x1 and y4 follows that the third and fourth entries
of x3 and y2 are zero. We have a contradiction with the fact that X and Y are full
rank. We conclude that T cannot be decomposed in a sum of two rank-(2, 2, 2) terms.

On the other hand, there does not exist an approximation T̂ , consisting of a
sum of two rank-(2, 2, 2) terms, that is optimal in the sense of minimizing the error
‖T − T̂ ‖. Define T̂n as follows, for increasing integer values of n:

(5.3) T̂n = E •1 I1 •2 (I1 − nI2) •3 I1 + E •1

(
I1 +

1

n
I2

)
•2 (nI2) •3

(
I1 +

1

n
I2

)
.

We have

T̂n = T +
1

n
E •1 I2 •2 I2 •3 I2.

Clearly, ‖T − T̂n‖ goes to zero as n goes to infinity. However, at the same time the
norms of the individual terms in (5.3) go to infinity. This shows that degeneracy also
exists for block term decompositions.

Example 1. Figure 5.1 shows a typical degeneracy. We constructed a tensor T as
in (5.1) with E , however, defined by

e111 = −14 e121 = −4 e211 = 6 e221 = 7,

e112 = 8 e122 = 13 e212 = 7 e222 = 7.

The eigenvalues of EI×J,1 · E−1
I×J,2 are complex, so E is rank-3 in R. The algorithm

in Table 3.1 was used to approximate T by a sum of two rank-(2, 2, 2) terms. The
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left plot shows a monotonous decrease of the approximation error. The right plot
shows the evolution of the norm of the rank-(2, 2, 2) terms (the curves for both terms
coincide).

6. Conclusion. We have derived ALS algorithms for the different block term
decompositions that were introduced in [11]. ALS is actually a very simple approach.
For PARAFAC, combining ALS with (exact) line search improves the performance
[33]. An other technique that has proved useful for PARAFAC is the Levenberg–
Marquardt type optimization [39]. When the tensor is tall in one mode, PARAFAC
may often be computed by means of a simultaneous matrix decomposition [10]. Since
the submission of this manuscript, we have been studying generalizations of such
methods to block term decompositions [28, 29, 30, 31].

Acknowledgment. The authors wish to thank A. Stegeman (Heijmans Insti-
tute, The Netherlands) for proofreading an early version of the manuscript. A large
part of this research was carried out when L. De Lathauwer and D. Nion were with
the ETIS lab of the French Centre National de la Recherche Scientifique (C.N.R.S.).

REFERENCES

[1] G. Boutry, M. Elad, G.H. Golub, and P. Milanfar, The generalized eigenvalue problem for
nonsquare pencils using a minimal perturbation approach, SIAM J. Matrix Anal. Appl.,
27 (2005), pp. 582–601.

[2] D. Burdick, X. Tu, L. McGown, and D. Millican, Resolution of multicomponent fluorescent
mixtures by analysis of the excitation-emission-frequency array, J. Chemometrics, 4 (1990),
pp. 15–28.

[3] J. Carroll and J. Chang, Analysis of individual differences in multidimensional scaling
via an N-way generalization of “Eckart-Young” decomposition, Psychometrika, 9 (1970),
pp. 267–283.

[4] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, Symmetric tensors and symmetric tensor
rank, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1254–1279.

[5] L. De Lathauwer, Signal Processing Based on Multilinear Algebra, Ph.D. thesis, K.U.Leuven,
Belgium, 1997.

[6] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decom-
position, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.

[7] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-
(R1, R2, . . . , RN ) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl.,
21 (2000), pp. 1324–1342.

[8] L. De Lathauwer and J. Vandewalle, Dimensionality reduction in higher-order signal pro-
cessing and rank-(R1, R2, . . . , RN ) reduction in multilinear algebra, Linear Algebra Appl.,
391 (2004), pp. 31–55.

[9] L. De Lathauwer, B. De Moor, and J. Vandewalle, Computation of the Canonical Decom-
position by means of a simultaneous generalized Schur decompositition, SIAM J. Matrix
Anal. Appl., 26 (2004), pp. 295–327.

[10] L. De Lathauwer, A link between the Canonical Decomposition in multilinear algebra and
simultaneous matrix diagonalization, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 642–666.

[11] L. De Lathauwer, Decompositions of a higher-order tensor in block terms—Part II: Defini-
tions and uniqueness, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1033–1066.

[12] V. de Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approxima-
tion problem, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084–1127.

[13] M. Elad, P. Milanfar, and G.H. Golub, Shape from moments—an estimation theory per-
spective, IEEE Trans. Signal Process., 52 (2004), pp. 1814–1829.

[14] L. Eldén and B. Savas, A Newton–Grassmann Method for Computing the Best Multi-Linear
Rank-(r1, r2, r3) Approximation of a Tensor, Tech. report LITH-MAT-R-2007-6-SE, De-
partment of Mathematics, Linköping University, 2007.
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