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A Block Component Model-Based
Blind DS-CDMA Receiver

Dimitri Nion and Lieven De Lathauwer, Senior Member, IEEE

Abstract—In this paper, we consider the problem of blind
multiuser separation-equalization in the uplink of a wideband
DS-CDMA system, in a multipath propagation environment
with intersymbol-interference (ISI). To solve this problem, we
propose a multilinear algebraic receiver that relies on a new
third-order tensor decomposition and generalizes the parallel
factor (PARAFAC) model. Our method is deterministic and
exploits the temporal, spatial and spectral diversities to collect
the received data in a third-order tensor. The specific algebraic
structure of this tensor is then used to decompose it in a sum
of user’s contributions. The so-called Block Component Model
(BCM) receiver does not require knowledge of the spreading
codes, the propagation parameters, nor statistical independence
of the sources but relies instead on a fundamental uniqueness
condition of the decomposition that guarantees identifiability of
every user’s contribution. The development of fast and reliable
techniques to calculate this decomposition is important. We pro-
pose a blind receiver based either on an alternating least squares
(ALS) algorithm or on a Levenberg-Marquardt (LM) algorithm.
Simulations illustrate the performance of the algorithms.

Index Terms—Blind signal extraction, block component model
(BCM), CDMA, higher-order tensor, PARAFAC.

I. INTRODUCTION

I N signal processing for telecommunications, the conception
of highly efficient wireless systems that guarantee simulta-

neous multiuser access is essential. In training-based systems,
the users periodically transmit a training sequence known by
the receiver, which then estimates the parameters of the propa-
gation channel, such as delays caused by multiple reflections of
the radio waves on obstacles encountered. However, 20% of the
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bandwidth is devoted to training in GSM (up to 40% in UMTS).
Blind methods are thus attractive so as to guarantee a high com-
munication rate by eliminating (or reducing) the training sets.
Moreover, in fast-time varying channels, the lack of station-
arity makes training not efficient. Blind approaches can also be
useful if severe multipath fading occurs during the training pe-
riod. Besides, in some situations such as eavesdropping, the use
of training sequences is not possible. It is the latter application
that motivated this research.

Usually, blind techniques rely on temporal properties of the
signals or spatial properties of the receiver. Temporal blind
methods enforce known signal properties on their estimates
such as finite alphabet (FA) or constant modulus (CM) of the
signal constellation [1], [2]. Other algorithms use the constant
symbol rate of a digital signal, that allows temporal oversam-
pling so as to create “virtual” channels before equalization
[3], [4]. Another common approach is based on higher-order
statistics (HOS), which relies on probability distributions of
the source signals [5], [6]. HOS methods usually require large
amounts of data, i.e., the channel has to be stationary over a
large number of symbol periods, which can limit the reliability
of HOS-based algorithms.

Spatial blind methods estimate the signals impinging on
an antenna array in two steps by considering the independent
linear combinations of the source signals received. The direc-
tions of arrival (DOAs) are first estimated by direction-finding
techniques such as MUSIC [7] or ESPRIT [8]. The array
outputs are then optimally combined to extract each signal
from interference and noise. However, the performance of these
algorithms depends strongly on the reliability of prior spatial
information (antenna calibration or special geometry). The
temporal and spatial diversities may also be combined to build
blind space-time equalizers [9].

Most of these blind methods in the literature are formulated
in terms of second-order algebra and consist of solving a matrix
decomposition problem of the form , where , and

are the observation, channel and source matrices, respectively.
We refer to [10] and references therein for algebraic solutions to
this problem. More recently, multilinear algebraic methods have
received much attention in signal processing [11]–[17]. They re-
vealed to be a powerful tool for (HOS-)based independent com-
ponent analysis [13], array processing [14], and purely deter-
ministic blind separation of CDMA signals [15].

In [15], the problem of blind multiuser separation-equaliza-
tion of DS-CDMA signals impinging on an antenna array is
considered. If the multipath reflectors are in the far field and in
the absence of intersymbol-interference (ISI), the authors have
shown that the received data can be arranged in a three-way
array or third-order tensor that follows a so-called parallel factor
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(PARAFAC) model. In [16] and [17], only the far-field reflec-
tion assumption is taken into account and the authors propose
algebraic methods more general than PARAFAC to deal with
ISI caused by large delay spread.

In this paper, we address the problem of blind separation-
equalization of DS-CDMA signals received by an antenna array
for a more general propagation scenario: the multipath reflectors
are not necessarily located in the far field of the antenna array
and ISI may occur on several consecutive symbols. This propa-
gation scenario is the same as the one studied in [18].

This paper shows how this problem can be solved by a new
multilinear model, the so-called block component model (BCM)
[19]–[21]. The BCM in this paper generalizes PARAFAC and
the multilinear models of [15] and [16]. We also present two dif-
ferent algorithms to compute the decomposition of the BCM: an
alternating least squares (ALS) algorithm and a Levenberg-Mar-
quardt (LM) algorithm, which are themselves generalizations
of their PARAFAC versions. These algorithms take the Toeplitz
structure of the symbol matrix into account.

The system is described in terms of its discrete-time base-
band-equivalent model where signals, codes, and channels are
represented by samples of their complex envelopes taken at the
chip rate. We start with the observation that the temporal, spa-
tial and spectral diversities give a third-order tensor structure
to the received data. We then exploit the algebraic structure
of this tensor of observations, which follows a BCM. In this
context, the BCM leads to a deterministic blind receiver that
jointly performs separation and equalization from the convolu-
tive mixtures received by the antennas. This receiver does not
assume knowledge of the CDMA codes, channel impulse re-
sponses and antenna array responses neither statistical indepen-
dence between the transmitted signals.

The separation of users’ signals rather relies on the unique-
ness of the BCM decomposition, which consists of writing the
tensor of observations as sum of users’ contributions. Each
contribution consists of factors that represent the antenna array
response, the transmitted symbols with interference, and the
channel impulse response convolved with the CDMA code.
The equalization (or echo canceling) is performed within each
contribution by imposing a Toeplitz structure to the matrix that
holds the transmitted symbols with interference.

Our working assumptions are the following:
1) The spreading codes are not known by the receiver and may

not be orthogonal. The codes are assumed to be symbol-
periodic and their length is known or has been estimated
(e.g., using cyclostationarity tests [22]).

2) We assume that the different user sequences have been syn-
chronized at the symbol level.

3) Every multipath channel between user and antenna is
supposed to be time-invariant over symbols. Since the
method we propose is deterministic, it can work for small
frame sizes such that this assumption is valid.

The paper is organized as follows. In Section II, we recall the
instantaneous and convolutive models that apply to DS-CDMA
data received by an antenna array. In Section III, we introduce
some multilinear algebra prerequisites. In Section IV, we dis-
cuss the PARAFAC decomposition. In Section V, we look at the
convolutive data model from a multilinear algebraic perspective

and we introduce the BCM blind receiver. In Section VI, we de-
rive the ALS and LM algorithms to compute the decomposition
of this model. Finally, Section VII illustrates the performance of
these algorithms with six experiments. Section VIII is the con-
clusion.

Parts of this manuscript have appeared in the conference
paper [23]. Some mathematical aspects are developed in more
detail in [19]–[21].

Notation: A calligraphic letter denotes a third-order tensor
and a bold-face capital letter denotes a matrix. Vectors are
written in bold-face lower-case and indicates the th
column of matrix . Scalars are lower-case . The scalar in-
dicates the th element of vector and the scalar denotes the
element on the th row and the th column of matrix . Capitals
are also used to denote index upper bounds
and matrix dimensions . The transpose, complex con-
jugate, complex conjugate transpose, and pseudoinverse are
denoted by , , , and , respectively. and denote
column-vectors of ones and zeros, respectively. The Kronecker
product is denoted by . The condition number of , which is
the ratio of its highest singular value to its smallest, is denoted
by . The norm is the Frobenius norm. Furthermore,
the operator builds a vector from a matrix by stacking
the columns of this matrix one above the other such that the
element of the matrix becomes the element at
position of the vector . If a matrix is
partitioned along one dimension, i.e., is of size or

, then the th block is denoted by .

II. DATA MODEL: ANALYTIC FORM

A. Instantaneous Model

We consider users transmitting, at the same time within the
same bandwidth, frames of symbols spread by DS-CDMA
codes of length towards an array of antennas. In a direct-
path only propagation scenario, the assumption that the channel
is noiseless and memoryless leads to the following instanta-
neous model without interchip-interference (ICI):

(1)

where is the output of the th antenna for chip and symbol
. For a given user , the sequence holds the trans-

mitted symbols, holds the CDMA code and
holds the fading factors multiplied by the antenna gains between
this user and the antennas.

In the case of multipath propagation, the channel for each user
can be modeled as a finite impulse response (FIR) filter. If the
delay spread is small (i.e., in the order of a few chips), ISI can be
avoided by adopting a “guard chips” or “discard prefix” strategy
[15]. Moreover, if multipath effects are in the far field, then the
data have a similar structure as before. One just needs to replace
in (1) by , the th element of the convolution between the
spreading code of user and its channel impulse response

(2)
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In Section IV, we recall that this analytic model can alge-
braically be written as a PARAFAC model.

B. Convolutive Model

Let us focus on a more complex situation where multipath
propagation with large delay spread leads to ISI, and where the
multipath reflectors are not necessarily located in the far field.
If is the symbol period and the spreading waveform of
the th user, then the baseband signal transmitted by this user is

Let be the chip period, and the chip pulse (e.g.,
a raised cosine). Then the spreading waveform is given by

The signal is transmitted over a specular multipath channel
with discrete paths, each one being characterized by its own
delay , angle of arrival and attenuation , where de-
notes the path index. Let denote the channel length at the
symbol rate, meaning that interference is occurring over sym-
bols.

The received signal impinging on the array of antennas is
then sampled at the chip rate. If we denote by the
th chip within the th symbol period of the th user’s signal

received by the th antenna from the th path, we get

(3)
In (3), is the sample of at instant

and is the response of the th antenna
to the signal of the th user coming from the th path with an
angle of arrival .

Finally, by summing the contributions of the paths for each
of the users, we get the expression for one sample of the
overall received signal, which stands for the convolutive model

(4)
where , , and are the user, path, and interfering symbol index,
respectively. In Section V, we will show that this convolutive
model can be algebraically written as a new model, the so-called
BCM. Our approach generalizes the results of [16], where we
assumed that all multipath reflectors are in the far field.

Remark: Note that we have taken the same value of and
for all users. This was done for notational convenience. Our

methods still work if and are user-dependent. However, in
the latter case the formal derivation of the maximum number of
users for which uniqueness of the model is guaranteed, becomes
a harder problem than the one in [20], of which the results are
reported in Section V-B.

III. MULTILINEAR ALGEBRA PREREQUISITES

Definition 1. (Mode-n Product): The mode-1 product of a
third-order tensor by a matrix ,
denoted by , is an -tensor with elements
defined, for all index values, by

Similarly, the mode-2 product by a matrix and
the mode-3 product by are the and

tensors, respectively, with elements defined by

In this notation, the matrix product takes the
form of .

Definition 2. (Rank-1 Tensor): The third-order tensor
is rank-1 if its elements can be written as

, where , and .
This definition generalizes the definition of a rank-1 matrix:

has rank 1 if .
Definition 3. (Tensor Rank): The rank of is defined as the

minimum number of rank-1 tensors yielding in a linear com-
bination.

Definition 4. (Frobenius Norm): The Frobenius norm of the
tensor is defined by

Definition 5. (Matrix Representation of a Tensor): The three
standard matrix representations of a third-order tensor

, denoted by , and are de-
fined by

results from the row-wise concatenation of the slices
of size in Fig. 1. In the same way, and

result from the concatenation of the slices and ,
respectively. By convention, when a partitioned matrix is built,
indices to the right vary more rapidly than indices to the left. In
this notation, results from concatenation of blocks
of size while results from that of blocks of
size .

IV. PARALLEL FACTOR ANALYSIS

A Canonical or a Parallel Factor Decomposition of a tensor
with elements denoted by is a decomposition
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Fig. 1. The three ways of matricizing a third-order tensor.

Fig. 2. Schematic representation of the PARAFAC model.

of as a linear combination of a minimal number of rank-1
tensors

(5)

where , , , are the th columns of matrices ,
, and , respectively, and where , , and

denote the row index. This trilinear model, represented in Fig. 2,
was introduced in [24] and [25]. Around 1970, it was indepen-
dently reintroduced in Psychometrics [26] and Phonetics [27].
Later on, the decomposition was also applied in Chemometrics
and food industry [28]. PARAFAC has also found its way to data
analysis [29] and wireless communications [14], [15], [30].

From (2) it is clear that PARAFAC can only be unique up
to some trivial indeterminacies: any permutation of the rank-1
terms in (5) leads to the same tensor and any scaling and
counterscaling of the factors of the rank-1 terms also lead to the
same tensor . PARAFAC uniqueness is studied in [31]–[33]. A
specific case is where and are both full column rank , and

does not contain colinear columns. In this case, PARAFAC
is unique up to its trivial indeterminacies [34].

In the next section, we show that the problem of blind separa-
tion-equalization of convolutive mixtures (4) can be solved by a
new tensor decomposition that is more general than PARAFAC.

V. BCM

A. Convolutive Model: Algebraic Form

We start with (3), in which , for fixed indices and
, and varying indices , and , can be considered as an element

of an tensor . The samples are
the entries of an matrix , the symbols are
the entries of an Toeplitz matrix and the coefficients

are the entries of a vector . The tensor
can, thus, be represented by

which is written in a compact way as

(6)

This tensor represents the contribution of the th path associated
to the th user. Considering all paths, the overall contribution
of the th user is given by

(7)

This equation can be rewritten in a more compact way as

(8)

where is an tensor with each frontal
slice equal to one of the matrices: . The

Toeplitz matrix holds the interfering symbols and
the matrix contains the set of vectors . Finally,
we consider users transmitting at the same time, each along

paths, and we obtain the following tensor equivalent of (4)
after summing the contributions

(9)

Thus, the tensor of observations follows a BCM,
represented in Fig. 3 [20], [23]. An equivalent but formally dif-
ferent model was proposed in [18].

The indeterminacies of the BCM defined in (9) are character-
ized as follows:

(10)

where the scalar and the nonsingular matrix represent the
indeterminacy in modes two and three, respectively. Note that
the indeterminacy in the second mode involves a scalar rather
than a matrix due to the Toeplitz structure of . In fact, re-
placing by a nonsingular matrix would destroy
the Toeplitz structure of , unless . The algorithms
we propose in Section VI for the computation of the decom-
position enforce this structure at every iteration by updating the
generator vectors of the Toeplitz matrices instead of the matrices
themselves.
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Fig. 3. Schematic representation of the BCM.

B. Uniqueness of the BCM

If the BCM (9) is unique (up to the indeterminacies men-
tioned in Section V-A) then its computation allows for the sep-
aration of the different users’ signals and the estimation of the
transmitted sequences. Let us denote by and , the
and matrices that result from the concatenation of
the blocks and , respectively. The following theorem
has been derived in [20, Theorem 6.1]. We call a tensor generic
when its entries can be considered drawn from continuous prob-
ability density functions.

Theorem 1: Suppose that , ,
, and that are generic, then the BCM decomposition is

essentially unique.
The condition in Theorem 1 is similar to the PARAFAC con-

dition studied in [34] (see also Section IV). The main difference
is that for at least three instead of two slices are required.
Practically speaking, uniqueness is guaranteed if and if
the number of users is bounded by . In
some cases that do not satisfy the conditions on the ranks of
and , uniqueness may nevertheless be proved in analogy with
[20, Ex. 3].

C. Matrix Representation of the BCM

Let us denote by the matrix resulting from the row-
wise concatenation of the slices of size of . We
then build the matrix of size by concatenation of
all , . The decomposition of following
the BCM then consists of the estimation of the three matrices

, , and . The matrix
has a block-Toeplitz structure. We now write each matrix repre-
sentation of in terms of the unknowns.

Let us consider the tensor of size
and its matrix representation . Equation (9) can then be
rewritten as

(11)

where is the matrix resulting from the concate-
nation of the matrices . Let us now consider the tensor

of size and its matrix representation
. Equation (9) can then be rewritten as

(12)

where is the matrix resulting from the concate-
nation of the matrices . Finally, the third matrix repre-
sentation of is given by

(13)

where is a matrix of size
.

D. Known User Signatures

Several blind CDMA receivers proposed in the literature cap-
italize on the known signature of a user of interest in order to re-
move multiuser interference (MUI) either in a single path [35]
or multipath scenario [36], [37]. A CM criterion [1], [38] can
also be included, which leads to constrained optimization tech-
niques [39]–[41]. Even though users’ signatures are known by
the base station in civil applications, they are not available in
applications such as eavesdropping. As for the PARAFAC re-
ceiver of [15], the algebraic structure of the BCM is rich enough
to solve the problem without this prior knowledge. Our tech-
niques can however be adapted to take the spreading codes into
account. It suffices to realize that the tensors contain the con-
volution of each user’s spreading code with the corresponding
channel. If the spreading codes are known, then the model is
still multilinear, in the transmitted symbols (matrices ), in the
antenna gains (matrices ), and in the channel coefficients, re-
spectively. This structure can directly be exploited in the ALS
algorithm proposed in the next section. The LM algorithm can
be adapted as well: if knowledge of the spreading codes is as-
sumed, the parameter vector in Section VI-B has to be re-
placed by a vector that contains the channel coefficients. These
modifications are left as future research.

VI. COMPUTATION OF THE BCM

In this section, we present two different algorithms to com-
pute the decomposition of the BCM given in Section V, i.e., we
want to estimate , and for each user, given only .

We suppose that (number of active users), (maximum
number of paths per user) and (maximum channel length at
the symbol rate over all users) are known. Methods for the esti-
mation of the rank in PARAFAC are available from the liter-
ature [42]. In addition, methods for the estimation of the dimen-
sions of the so-called Tucker model [43]–[45] are available from

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 17, 2008 at 06:44 from IEEE Xplore.  Restrictions apply.



5572 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 11, NOVEMBER 2008

[46]–[48]. See also [28], [29] for a survey. These methods can
possibly be generalized to the estimation of the BCM dimen-
sions. Such a generalization is outside the scope of this paper.
In Section VII we give some guidelines on how to estimate
and . Note that the product (supposed to be less than
and ) can be estimated as the number of significant singular
values of the matrix in (12), provided that the noise
level is low enough. If needed, the procedures to be presented in
this paper could be repeated for a limited set of parameters and
the most plausible value retained.

First, an ALS algorithm is developed. ALS is a well-known
technique for the calculation of the PARAFAC decomposition
[28] and has been extended to the decomposition of a tensor in
Block Terms in [21]. In Section VI-A, we show how the general
ALS scheme can be modified so as to take the Toeplitz structure
in the second mode into account and thus perform equalization
within each contribution.

The second algorithm we propose is of the LM type. In the
case of PARAFAC, this method outperforms ALS [49] and is
especially useful for “difficult” problems [50]. In Section VI-B,
we generalize the LM scheme to decompose the BCM and the
Toeplitz structure is also taken into account.

Let denote an estimation of the tensor of observations
given in (9). The algorithms derived in this section have been
designed to minimize the following cost function:

(14)

A. ALS Algorithm

The ALS algorithm exploits the multilinearity of the alge-
braic model to alternate between conditional least-squares up-
dates of the unknowns , and in each iteration. Given pre-
vious estimates of two unknowns, the update rule of the third
unknown follows from the matrix representations of derived
in Section V-C:

(15)

However, the block-Toeplitz structure is not preserved in this
update procedure of . This structure could to some extent be
imposed afterwards, as explained in [3], [17], and [18].

In the following, we propose to replace this two-steps update
of by a single one that consists of the least-squares estimation
of the generator vectors of the Toeplitz matrices. Let be the

generator vector of the Toeplitz matrix
corresponding to the user: .
We denote by the vector resulting from
the concatenation of all vectors . We will now rewrite (12) in
terms of . We start with the following expression:

(16)

where . Let be the matrix obtained
by stacking the columns of in the reverse order, from the last

to the first (in Matlab notation we have
). We then build the following matrix :

The matrix consists of submatrices of dimension
. In subsequent submatrices, the ma-

trix is shifted one position to the right. We now have
. Finally, (16) can be written as

(17)

where and is the
matrix obtained by column wise concatenation of all .

The least squares update of is then given by

(18)

As discussed in Section V-B, enforcing the Toeplitz structure in
each ALS iteration with this technique reduces the ambiguity
on each to a single complex scalar .

We now build the following ALS algorithm for the computa-
tion of the BCM, where the superscript denotes an estima-
tion at the th iteration.

ALS algorithm with Toeplitz structure preserved

Initialize and , set

while (e.g. ) do
1. Build from and
2. Estimate from (18) and build
3. Build from and
4. Estimate from (15)
5. Build from and
6. Update from (15)
7.

end

Since each substep of the ALS algorithm monotonically de-
creases the cost function, the algorithm converges in principle
to at least a local minimum.

B. LM Algorithm

The ALS algorithm for PARAFAC is known to converge
slowly when applied to problems with high collinearity of
factors across one or more modes that cause the dataset to
be ill-conditioned [50]. Particularly, ill-conditioned factor
matrices also occur when the ALS goes through a so-called
“swamp,” a region with convergence speed almost null after
which convergence resumes [51]. In [49], a LM algorithm is
proposed for PARAFAC, providing quadratic convergence, and
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adapted to ill-conditioned problems. In contrast to ALS, the
factors in the three modes are updated at the same time. In this
section, we generalize the LM scheme to the decomposition
of the BCM. The Toeplitz structure of the matrices is also
taken into account.

1) Derivation of the LM Update Equations: Let be an es-
timation of the tensor of observations . Each element of this
tensor can be written as

(19)

where , and denote an estimation of , and ,
respectively.

Let us stack all the unknowns in a vector that contains the
elements of the matrices , the tensors and the
generator vectors of the Toeplitz matrices . This vector is of
length , where represents the
number of unknowns. If we denote by and the vectors
of size and such that
and , then is written as

We denote by and the vectors of size
that contain the entries of (built from ) and ,

respectively, stacked such that the left index is
the slowest and the right index the fastest.

The scalars and represent the th ele-
ment of and , respectively, where

is a superindex that combines
, and , with .

The problem now consists of the minimization of the fol-
lowing cost function with respect to the vector :

(20)

where is the vector of residuals.
Let the matrix be the Jacobian matrix of with

respect to . Further denote by the gradient of with
respect to

(21)

One solution to minimize has been proposed by Leven-
berg and Marquardt [52] and is also known as “damped
Gauss-Newton Method.” It consists of updating the step
from the following modified normal equations:

(22)

The damping parameter makes the matrix
nonsingular and positive definite which ensures that is a
descent direction. This parameter has several effects:

• For large values of , (22) gives , i.e., a
short step in the steepest descent direction.

• For small values of , (22) reduces to a Gauss-Newton
update, with quadratic convergence.

The value of is adapted after each iteration in a way that is
thoroughly described in [53]. The LM algorithm for the compu-
tation of the BCM is summarized as follows.

LM algorithm with Toeplitz structure preserved

Initialize , set

while (e.g. ) do
1. Calculate and
2. Solve to find
3. Update :
4. Update as in [53].
5.

end

2) Calculation of the Jacobian and Gradient: The LM
method has a high convergence speed, but the calculation of
the Jacobian and gradient in every iteration may become time
consuming when the size of the data increases. In [49], the
specific structure of the Jacobian and gradient for PARAFAC
are exploited so that they can be computed in a relatively
efficient way. We generalize these results to the BCM. From
Section VI-A, given the estimated factors , and , we can
write the estimated tensor model under the following matrix
and vector forms:

(23)
where we recall from Section V-C that the matrix
is built from and only, the matrix

is from and and the matrix is from
and .

From the partitioned structure of , we can write
where , , and stand for

, , , and , respectively. Thus, the
matrix is directly given by (23)

(24)

In (23b) and (23c), the order the entries are stacked in is
different. The matrix is calculated by remapping from

) to , i.e.

(25)

The permutation matrix is defined as fol-
lows:

(26)

where , , is the column vector of the iden-
tity matrix . In the same way, is calculated by remapping

from to
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where the permutation matrix is defined by

(27)

We can then directly build the blocks of in (22)

(28)

In the computation of the three diagonal blocks one can use
properties of the Kronecker product. We obtain

while the off-diagonal blocks can be written as

The three remaining off-diagonal blocks are then given by Her-
mitian symmetry. In order to save significant storage space, the
sparsity can also be used. We now explain how the gradient of

in (21) can be calculated. Due to the structure of , we can
write as the concatenation of the following three gradients:

(29)

where , , and have length , , and
, respectively. From (23), we can rewrite the loss function

defined in (14) and (20) under the three equivalent following
forms:

(30)

which implies

Finally, since is updated such that the matrix
is nonsingular and positive-definite, (22) can be solved by
Cholesky decomposition and backsubstitution, an efficient way
to solve this set of normal equations.

VII. SIMULATION RESULTS

In this section, we illustrate and compare the perfor-
mance of the ALS and LM algorithms. Consider the matrix

that holds the generator vectors of the
Toeplitz matrices . We denote by an estimate of this
matrix. In case of perfect estimation, these two matrices are
equal, up to permutation and scaling of the columns. For the
purpose of performance evaluation in presence of noise, the
permutation ambiguity is first solved by using a greedy least
squares column matching algorithm [15]. Then, each column of
the reordered matrix has to be divided by a scaling factor ,
as mentioned in Section V. These scaling factors are taken as
the diagonal elements of the matrix . Before calculation
of the bit error rate (BER), the elements of the reordered and
rescaled matrix are projected to the closest points of the
finite symbol alphabet.

The results of the first two experiments of this section have
been obtained with spreading codes of length , short
frames of QPSK-symbols, antennas, in-
terfering symbols, major paths per user and users.
The antenna gains, the spreading sequences and the channel
fading coefficients are drawn from an independent identically
distributed (i.i.d.) Gaussian generator with zero mean and unit
variance. Since , the rank of is at most so that
Theorem 1 can not directly be applied. In this particular case,
uniqueness of the BCM can nevertheless be proved in analogy
with [20, Ex. 3].

In a first experiment (Fig. 4), we illustrate the impact of ill-
conditioned noise-free data on the convergence speed. We have
fixed the tensors and the matrices and for each value of
the set , we test the ALS
and LM algorithms with 10 different random initializations. The
condition number is imposed from an SVD of a randomly drawn
matrix , , after which and are kept fixed
while is changed so as to enforce the desired value of .
Since the model is noise-free, we have that if the global
minimum is reached. We select the best initialization as the one
that leads to the global minimum (the threshold has been fixed
to ) with the fewest iterations. Fig. 4(a) shows the
number of iterations needed to converge as a function of the
values of . The ALS algorithm is very sensitive to the value
of since varies from 80 to when takes values
from 1 to 200. Under the same conditions, the LM algorithm
requires only 10 to 40 iterations. This behavior can be explained
by Fig. 4(b), which shows the evolution of with respect to the
iteration index for . It turns out that the
convergence speed of the ALS algorithm drastically decreases
for increasing values of . After several small steps in the
steepest direction, i.e., large values of in (22), the convergence
speed of the LM algorithm always increases, which is the result
of quadratic convergence of Gauss-Newton steps.

In a second experiment (Fig. 5) we assume the presence of ad-
ditive white Gaussian noise (AWGN) so that the observed tensor
is given by , where is the
tensor that contains the noise-free data resulting from the sum of
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Fig. 4. Impact of �(A) on the performance of ALS and LM algorithms for the decomposition of the noise-free tensor Y . (a) Number of iterations to converge
with respect to �(A). (b) Evolution of � with respect to iteration index.

Fig. 5. Average performance of the BCM-based blind receiver in presence of AWGN, by means of ALS or LM. (a) Mean BER versus SNR. (b) Mean number of
iterations versus SNR.

contributions and contains noise with variable variance.
The signal-to-noise ratio (SNR) at the input of the multiuser re-
ceiver is defined as

We illustrate the performance of the BCM blind receiver based
either on ALS or LM by means of 1000 Monte Carlo runs. For
each run, the unknown matrices are redrawn and the decom-
position of the BCM is calculated from 10 different random
starting points. The best starting point is then selected as the
one that leads to the smallest value of . The stop criterion is

and no control on is as-
sumed. In Fig. 5(a) the BER is averaged over all users. We com-
pare to the performance of the nonblind least-squares (LS) re-
ceiver of which the performance is often used as a benchmark
for blind algorithms. In contrast to our algorithms, the LS re-
ceiver assumes knowledge of the channel coefficients, spreading

codes and antenna array response, i.e., matrices and are
known. The LS solution for the symbol estimates is then given
by (18), where perfect knowledge of is assumed. We also plot
the performance of two semiblind techniques: either known
(Sbc curve) or known (Sba curve). The ALS and LM al-
gorithms give the same BER curves which means that, on the
average, they converge to the same point. Moreover, the per-
formance of the blind receiver based on BCM is close to that
of the LS receiver (the gap between the two curves is 2 dB for

). Note that assuming the antenna array response
known ( known scalars out of 680 unknowns) does
not affect the estimation of the remaining unknowns much. In
fact, there is enough structure in the BCM itself so that knowl-
edge of the factors in one dimension does not significantly im-
prove the estimation of the factors in the other dimensions. This
fact was noticed in [54] for the PARAFAC model. Of course,
assuming the tensors known has more impact on the per-
formance ( known scalars out of 680). In Fig. 5,
we compare the mean number of iterations required by ALS
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Fig. 6. Impact of �(Y) on the performance of ALS and LM algorithms for the decomposition of the noise-free tensor Y of (31). (a) Percentage of successful
simulations versus �(Y). (b) Mean number of successful initializations among successful simulations, and mean number of iterations for these initializations.

Fig. 7. Near-far effect on the performance of ALS and LM algorithms with �(Y) = 10, in presence of AWGN. (a) BER of user 1 (� = 1). (b) BER of user
2 (� = 5:5). (c) BER of user 3 (� = 10).

and LM algorithms for the 1000 runs. It is clear that the LM
algorithm requires fewer iterations than ALS. For instance, the
relative gain in number of iterations is 60% for .
Although one LM iteration is (reasonably) more costly than one
ALS iteration, LM is to be preferred for the dimensions in this
test (the gain in time we measured for was 40%).

In a third experiment (Fig. 6), we illustrate the impact of the
near-far effect on the performance of the ALS and LM algo-
rithms for the separation of noise-free data. For this experiment
10 different initializations are redrawn for each of the 1000 runs.
The parameters have been chosen as follows: codes of length

, QPSK symbols, antennas, inter-
fering symbols, paths, and users. The stop cri-
terion is the same as in the previous experiment. The observed
tensor is generated as follows:

(31)

where the weight is used to control the power of the
user’s signal at the input of the multiuser receiver. We denote by

the ratio . In all the following results,

Fig. 8. Impact of Toeplitz structure preservation and FA stage.

the set of amplitudes used to weight the three users’ contribu-
tions is . In Fig. 6(a),
we calculate the percentage of successful simulations, i.e., sim-
ulations for which at least one initialization leads to the global
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Fig. 9. Impact of over- and underestimation of P and L . (a) MSE of generator vectors versus SNR. (b) MSE of residual tensor.

minimum, where the for each user. In Fig. 6(b), we
have only selected the successful simulations. We calculate the
average number of successful initializations for these simula-
tions (top figure) and the average number of iterations for these
successful initializations (bottom figure). We conclude that the
LM algorithm is less sensitive to the value of than ALS.
Similarly to Fig. 4(b), the poor performance of ALS is due to
swamps, of which occurrence and length are linked to the value
of .

In a fourth experiment (Fig. 7), we illustrate the near-far effect
in presence of AWGN. We use the same values of parameters as
in the previous experiment and the same conditions for Monte
Carlo runs as in the second experiment. The evolution of the
mean value of BER for user 1 , user 2 and
user 3 is illustrated by Fig. 7(a)-(c), respectively.
Compared to the performance of ALS, the performance of the
LM algorithm is closer to that of the LS estimator for all three
users, which is due to the higher probability of ALS to stop in a
swamp. Under the same simulation conditions with

, we obtained the same curves for ALS and LM.
In a fifth experiment (Fig. 8), we illustrate the impact of the

Toeplitz structure preservation strategy and the FA projection
strategy. The tensor of observations is built with ,
BPSK symbols, , , and for each of the

users, and . The methods indexed by “direct” in
the legend update the generator vectors of the Toeplitz matrices
in one step, as proposed in this paper. The methods indexed by
“subspace” estimate these vectors in two steps as follows. First,
the matrices are estimated in the least squares sense while ig-
noring the Toeplitz structure. Then, the subspace-based method
of [3] is used for each to recover its structure, as mentioned in
Section VI-A. Apart from this Toeplitz structure update strategy,
we also compare to the performance obtained with the same al-
gorithms when a FA projection step is added within the loop

after the update of , as proposed in [18]. In the FA step, we
assume that the first symbol of each user sequence is known
and equal to 1. This allows one to eliminate the scaling ambi-
guity by normalizing each estimated symbol sequence by its
first element, after which the remaining symbols are projected
to the closest FA point. As a conclusion of this experiment, the
Toeplitz structure preservation strategy is more accurate than the
two-steps subspace strategy. As in [18], we noticed that con-
vergence is accelerated by the use of FA property within the
ALS loop (reduction by a factor 6 in this experiment). However,
rescaling each estimated sequence according to a potentially er-
roneous first symbol may affect the estimation of the other sym-
bols, which explains the degradation of the performance.

In a last experiment (Figs. 9 and 10), we assume that the
number of paths and the channel length are user-de-
pendent. We illustrate the impact of under- and overestimation
of these parameters. We have considered users, with

, . The other parameters
are , QPSK symbols, and .
In Fig. 9(a), we illustrate the evolution of the mean square error
(MSE) of the generator vector of the symbol matrix as a func-
tion of the SNR, for different choices of and . The
performance of the LS estimator is plotted as a benchmark. The
figure shows that overestimation of did not significantly af-
fect the performance. On the other hand, underestimation of
or did degrade the performance, the reason being that part of
the effective signal was considered as noise. Overestimation of

degraded the performance too.
Fig. 9(b) shows the evolution of .

We see that the fit improves for increasing and , until these
parameters reach their true values. After this point, the fit does
not significantly improve anymore. This can be used to estimate

and : the parameter estimates are increased to the point
where the effect on the fit becomes negligible. Moreover, over-
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Fig. 10. Impact of overestimation of L , SNR = 10 dB, J = 200. User 1 (left): P = 2, L = 3, and P̂ = 3, L̂ = 3. User 2 (right): P = 3, L = 2, and
P̂ = 3, L̂ = 3.

estimation of is indicated by the fact that the source constel-
lation pattern is lost. When the true value is strictly smaller
than its estimate , then can be very well approximated by

, with an Toeplitz matrix. In other words,
the true generator vector can be obtained from a linear com-
bination of the columns of . This implies in turn that the es-
timated generator vector does not show the typical constel-
lation pattern anymore. This is illustrated in Fig. 10. The left
panel shows the estimated symbols for user 1, with overes-
timated and correctly estimated. The right panel shows the
estimated symbols for user 2, with correctly estimated and

overestimated. Finally, we mention that we have observed
that overestimation of and/or slowed down the conver-
gence.

VIII. CONCLUSION

In this paper, we have shown how Block Component Anal-
ysis of a third-order tensor leads to a powerful blind receiver
in DS-CDMA systems where convolutive mixtures are received
by an array of antennas. The tensor model takes both ISI and
multipath propagation aspects into account, which was not the
case for the blind PARAFAC receiver in [15]. The separation
of each user’s contribution relies on the uniqueness property
of the BCM decomposition. The equalization step is performed
within each contribution by imposing a Toeplitz structure to the
symbol matrix. This method does not require the channel to be
stationary over many symbol periods since it is deterministic
and, thus, works for very short data sequences.

The BCM approach involves joint estimation of the factors
in the three modes, meaning that the method performs blind
channel identification, blind symbol estimation and blind DOA
estimation for each user. In a semiblind situation where the an-
tenna array geometry is known, the particular structure of the
matrices [10] could be exploited. Block Component Anal-
ysis can also be applied to other systems where at least three
diversities are available. For instance, the code diversity could
be replaced by a temporal oversampling diversity. The com-
putation strategy for the calculation of the BCM decomposi-
tion is an important issue. It turns out that an algorithm of the

LM type offers faster convergence than an ALS algorithm and
is better suited for blind extraction of ill-conditioned data and
small-power contributions.
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