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Abstract

In this paper, we introduce an enhanced line search algorithm to accelerate the convergence of the alternating least

squares (ALS) algorithm, which is often used to decompose a tensor in a sum of contributions. This scheme can be used for

the computation in the complex case of the Parallel Factor model or the more general block component model. We then

illustrate the performance of the algorithm in the context of blind separation-equalization of convolutive DS-CDMA

mixtures.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

An increasing number of problems in signal
processing, data analysis and scientific computing
involves the manipulation of quantities of which the
elements are addressed by more than two indices [1].
In the literature, these higher-order analogues of
vectors (first-order) and matrices (second-order) are

called higher-order tensors, multidimensional ma-
trices or multiway arrays. Key to the development
of algorithms is the computation of tensor decom-
positions. We briefly introduce the decompositions
used in the PARAllel FACtor (PARAFAC) model
and the more general block component model
(BCM). For the definition of PARAFAC, we need
to define the tensor outer product.

Definition 1.1 (Outer product). The outer product
of three vectors, h 2 CI�1, s 2 CJ�1 and a 2 CK�1,
denoted by (h � s � a), is an (I � J � K) tensor with
elements defined by ðh � s � aÞijk ¼ hisjak.

This definition immediately allows us to define
rank-1 tensors.

Definition 1.2 (Rank-1 tensor). A third-order tensor
Y has rank 1 if it equals the outer product of three
vectors.
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We are now in a position to formally define
PARAFAC.

Definition 1.3 (PARAFAC). A canonical or a
PARAFAC decomposition of a third-order tensor
Y 2 CI�J�K , represented in Fig. 1, is a decomposi-
tion of Y as a linear combination of a minimal
number of rank-1 tensors:

Y ¼
XR

r¼1

hr � sr � ar, (1)

where hr, sr, ar are the rth columns of matrices
H 2 CI�R, S 2 CJ�R and A 2 CK�R.

This trilinear model was independently intro-
duced in psychometrics [2] and phonetics [3]. More
recently, the decomposition found applications in
chemometrics [4] and independent component
analysis (ICA) [1,5]. The authors of [6] were the
first to use this multilinear algebra technique in the
context of wireless communications. They proposed
a blind PARAFAC-based receiver for instanta-
neous CDMA mixtures impinging on an antenna
array. However, in several applications, the inherent
algebraic structure of the tensor of observations Y
might result from contributions that are not rank-1
tensors. This more general situation is covered by
the BCM, introduced in [7–9].

For the definition of BCM, we need to define the
mode-n product of a tensor and a matrix.

Definition 1.4 (Mode-n product). The mode-2 and
mode-3 products of a third-order tensor H 2
CI�L�P by the matrices S 2 CJ�L and A 2 CK�P,

respectively, denoted by H�2S and H�3A, result in
an (I � J � P)-tensor, (I � L� K)-tensor, respec-
tively, with elements defined, for all index values, by

ðH�2SÞijp ¼
XL

l¼1

hilpsjl ; ðH�3AÞilk ¼
XP

p¼1

hilpakp.

We now have the following definition.

Definition 1.5 (BCM). A third-order tensor Y 2
CI�J�K follows a BCM if it can be written as
follows:

Y ¼
XR

r¼1

Hr�2Sr�3Ar. (2)

The vectors hr 2 CI�1, sr 2 CJ�1 and ar 2 CK�1 of
the PARAFAC model are now replaced by a tensor
Hr 2 CI�L�P and two matrices Sr 2 CJ�L and
Ar 2 CK�P, respectively.

A schematic representation of the BCM is given
in Fig. 2. In [10], this generalization of PARAFAC
was used to model convolutive CDMA mixtures
received by an antenna array. An equivalent but
formally different formulation was given in [11,12].
A somewhat simpler transmission scenario is
studied in [13,14]. The standard way to compute
the PARAFAC decomposition is the alternating
least squares (ALS) algorithm [4]. In [9,10], this
algorithm has been generalized to compute the
BCM decomposition. However, it is sensitive to
swamps (i.e., many iterations with convergence
speed almost null after which convergence resumes)
and thus sometimes needs a very large number of
iterations to converge. In [3,15], line search was
proposed to speed up convergence of ALS for
PARAFAC. A remarkable result has been obtained
in [16,17], where the authors have shown that, for
real-valued tensors that follow the PARAFAC
model, the optimal step size can be calculated. This
method is called ‘‘enhanced line search’’ (ELS).

ARTICLE IN PRESS

=I

J

K

+  ...  +y
h1

s1

a1

hR

sR

aR

Fig. 1. Schematic representation of the PARAFAC model.

SR
T

=
+  ... +S1

T

A1

I II

J

J

K

K K

L L

LL

P
PP

Y

AR·

J

Fig. 2. Schematic representation of the BCM.
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In this paper, we propose a new line search scheme
for both PARAFAC and BCM decompositions of
complex-valued tensors. The so-called ‘‘enhanced
line search with complex step’’ (ELSCS) is per-
formed before each ALS iteration. It consists of
looking for the optimal step size in C. A preliminary
version of this paper appeared as the conference
paper [18].

2. Enhanced line search in the complex case

Given only Y, the computation of the BCM
decomposition consists in the estimation of Hr, Sr

and Ar, r ¼ 1 . . .R. We first formulate the computa-
tion as the minimization of a quadratic cost
function. Denote by A and S the K � RP and J �

RL matrices that result from the concatenation of
the R matrices Ar and Sr, respectively, and by H the
I � RLP matrix in which the entries of the tensors
Hr are stacked as follows: ½H�i;ðr�1ÞLPþðl�1ÞPþp ¼

Hrði; l; pÞ.
Let YðJK�IÞ be the JK � I matrix representation

of Y, with elements defined as follows:
½YðJK�IÞ�ðj�1ÞKþk;i ¼ yijk: Let � denote the Kronecker
product, k � kF the Frobenius norm and Ŷ an
estimate of Y, built from the estimated factors Â,
Ŝ and Ĥ. The calculation of the BCM decomposi-
tion now consists of the minimization of the
following cost function:

f ¼ kY� Ŷk2F ¼ kY
ðJK�IÞ � ðŜ	RÂÞ � Ĥ

T
k2F, (3)

where the partition-wise Kronecker product 	R

of the matrices Ŝ 2 CJ�RL and Â 2 CK�RP, results
in a JK � RLP matrix defined by Ŝ	RÂ ¼

½Ŝ1 � Â1j . . . jŜR � ÂR�. For the PARAFAC decom-
position, L ¼ P ¼ 1 so the estimation of the
matrices H 2 CI�R, S 2 CJ�R and A 2 CK�R is done
by the minimization of the same cost function
except that 	R is replaced by 	, which is the
Khatri–Rao product, or column-wise Kronecker
product. Hence, the ELSCS scheme proposed
in the following works both for PARAFAC
and BCM. Note that Y is multi-linear in S, A, H.
The ALS algorithm exploits the multilinearity of
PARAFAC/BCM by minimizing f alternately
w.r.t. the unknowns A, S and H in each iteration.
Explicit formulation for the ALS algorithm is
given in [4,15] for PARAFAC and in [9,10] for
BCM.

For PARAFAC, it was noticed through simula-
tions that, when the convergence of the ALS

algorithm is slow, Â, Ŝ and Ĥ are gradually
incremented along fixed directions. Consequently,
line search was proposed to speed up the conver-
gence in [3,15]. The procedure consists of the linear
interpolation of the unknown factors from their
previous estimates:

Â
ðnewÞ
¼ Â

ðn�2Þ
þ rðÂ

ðn�1Þ
� Â

ðn�2Þ
Þ;

Ŝ
ðnewÞ
¼ Ŝ

ðn�2Þ
þ rðŜ

ðn�1Þ
� Ŝ

ðn�2Þ
Þ;

Ĥ
ðnewÞ
¼ Ĥ

ðn�2Þ
þ rðĤ

ðn�1Þ
� Ĥ

ðn�2Þ
Þ;

8>>><
>>>:

(4)

where Â
ðn�1Þ

, Ŝ
ðn�1Þ

and Ĥ
ðn�1Þ

are the estimates of
A, S and H, respectively, obtained from the
ðn� 1Þth ALS iteration. The known matrices

G
ðnÞ
A ¼ ðÂ

ðn�1Þ
� Â

ðn�2Þ
Þ, G

ðnÞ
S ¼ ðŜ

ðn�1Þ
� Ŝ

ðn�2Þ
Þ and

G
ðnÞ
H ¼ ðĤ

ðn�1Þ
� Ĥ

ðn�2Þ
Þ represent the search direc-

tions in the nth iteration and r is the relaxation
factor, i.e., the step size in the search directions.
This line search step is performed before each ALS

iteration and the interpolated matrices Â
ðnewÞ

, Ŝ
ðnewÞ

and Ĥ
ðnewÞ

are then used to start the nth iteration of
the ALS. The challenge of line search is to find a
‘‘good’’ step size in the search directions in order to
speed up convergence. In [3], the step size r is given
a fixed value (between 1:2 and 1:3). In [15] r is set to
n1=3 and the line search step is accepted only if the
interpolated value of the loss function is less than its
current value. For real-valued tensors, the ELS
technique [16] calculates the optimal step size by
rooting a polynomial.

However, in several applications [6,10], the data
are complex-valued. We therefore propose to
generalize the ELS algorithm to the complex case,
i.e., we look for the optimal step r in C. The new
scheme is called ELSCS.

Combination of (3) and (4) shows that, given the
estimates of A, S and H at iterations ðn� 1Þ and
ðn� 2Þ, the optimal relaxation factor r at iteration n

is found by minimization of:

fðnÞELSCS ¼ kðŜ
ðnewÞ
	RÂ

ðnewÞ
Þ � Ĥ

ðnewÞT

� YðJK�IÞk2F

¼ kððŜ
ðn�2Þ
þ rGðnÞS Þ	RðÂ

ðn�2Þ
þ rGðnÞA ÞÞ

� ðĤ
ðn�2Þ
þ rGðnÞH Þ

T
� YðJK�IÞk2F. ð5Þ

It is a matter of technical formula manipulations
to show that this equation can also be written as
follows:

fðnÞELSCS ¼ kr
3T3 þ r2T2 þ rT1 þ T0k

2
F, (6)
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in which the JK � I known matrices T3, T2, T1 and
T0 are defined by

T3 ¼ ðGS	RGAÞG
T
H ;

T2 ¼ ðS	RGA þGS	RAÞG
T
H þ ðGS	RGAÞH

T;

T1 ¼ ðS	RAÞG
T
H þ ðS	RGA þGS	RAÞH

T;

T0 ¼ ðS	RAÞH
T � YðJK�IÞ;

8>>>><
>>>>:

where the superscripts n and n� 2 have been
omitted for convenience of notation. We repeat
that the goal is the computation of the optimal r
from the minimization of (6). Denote by Vec the
operator that writes a matrix A 2 CI�J in vector
format by concatenation of the columns such that
Aði; jÞ ¼ ½VecðAÞ�iþðj�1ÞI . Eq. (6) is then equivalent to

fðnÞELSCS ¼ kT � uk
2
F ¼ uH � TH � T � u, (7)

where T ¼ ½VecðT3ÞjVecðT2ÞjVecðT1ÞjVecðT0Þ� is an
IJK � 4 matrix, u ¼ ½r3; r2; r; 1�T and :H denotes the
Hermitian transpose. The (4� 4) matrix D ¼ TH � T

has complex elements defined by ½D�m;n ¼ am;nþ

jbm;n. Since D is Hermitian, am;n ¼ an;m, bm;n ¼

�bn;m and bm;m ¼ 0. For real-valued data, the cost
function (7) is equivalent to fðnÞELSCS ¼ uT � TT � T � u.
This is a polynomial of degree six in the real variable
r and can thus easily be minimized [16].

The case of complex-valued data is more difficult.
We write the relaxation factor as r ¼ m:eiy, where m

is the modulus of r and y its argument, and propose
an iterative scheme that minimizes fðnÞELSCS by
alternating between updates of m and y. The
complexity of the latter iteration is fairly low
compared to the ALS iteration, since updating m

and y consists of rooting two polynomials of degree
five and six, respectively.

The partial derivative of fðnÞELSCS w.r.t. m can be
expressed as

dfðnÞELSCSðmÞ
dr

¼
X5
p¼0

cpmp, (8)

where the real coefficients cp are given in Appendix.
Given the last update of y, the update of m thus
consists of finding the real roots of a polynomial of
degree five and selecting the root that minimizes
fðnÞELSCSðmÞ.

After a change of variable, t ¼ tanðy=2Þ, the
partial derivative of fðnÞELSCS w.r.t. t can be ex-
pressed as

dfðnÞELSCSðtÞ
dt

¼

P6
p¼0dptp

1þ t2ð Þ
3
, (9)

where the real coefficients dp are given in Appendix.
Given the last update of m, the update of y consists
of finding the real roots of a polynomial of degree
six and selecting the root that minimizes fðnÞELSCSðtÞ.
The ELSCS scheme is then inserted in the standard
ALS algorithm.

ALSþ ELSCS algorithm

Initialize Ĥ
ð0Þ
, Ĥ
ð1Þ
, Ŝ
ð0Þ
, Ŝ
ð1Þ
, Â
ð0Þ
, Â
ð1Þ
, set n ¼ 1;

while kŶ
ðnÞ
� Ŷ

ðn�1Þ
kF4�1 (e.g. �1 ¼ 10�6) do

�n nþ 1;

FFStart ELSCS scheme FF

- Set p ¼ 1;

while jfðpÞELSCS � fðp�1ÞELSCSj4�2 ðe.g. �2 ¼ 10�4Þ do

- update m from (8) with y fixed;

- update y from (9) with m fixed;

�p pþ 1;

�������
end

- Build Â
ðnewÞ

; Ŝ
ðnewÞ

and Ĥ
ðnewÞ

from (4);

FFStart ALS updates FF

- Find Ŝ
ðnÞ

from Ĥ
ðnewÞ

and Â
ðnewÞ

;

- Find Ĥ
ðnÞ

from Â
ðnewÞ

and Ŝ
ðnÞ
;

- Find Â
ðnÞ

from Ŝ
ðnÞ

and Ĥ
ðnÞ
;

- Build Ŷ
ðnÞ

from Ŝ
ðnÞ
; Ĥ
ðnÞ

and Â
ðnÞ
;

�������������������������������������
end

3. Simulations results

In [10] we used the BCM to solve the problem of
blind separation-equalization of convolutive DS-
CDMA mixtures received by an antenna array after
multipath propagation. We assume that the signal
of the rth user is subject to inter-symbol-interference
(ISI) over L consecutive symbols and that this
signal arrives at the antenna array via P specular
paths. For user r, r ¼ 1 . . .R, the I � L frontal
slice Hrð:; :; pÞ of Hr then collects samples of the
convolved spreading waveform associated to the pth
path, p ¼ 1 . . .P. The J � L matrix Sr holds the J

transmitted symbols and has a Toeplitz structure.
The K � P matrix Ar collects the response of the K

antennas according to the angles of arrival of the P

paths.
In this section, we illustrate the improvement of

performance allowed by the ELSCS scheme, com-
pared to the simple ALS algorithm. We consider
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R ¼ 4 users, pseudo-random spreading codes of
length I ¼ 8, a short frame of J ¼ 50 QPSK
symbols, K ¼ 4 antennas, L ¼ 2 interfering symbols
and P ¼ 2 paths per user. In Figs. 3(a) and (b), we
give the results of 1000 Monte-Carlo trials. The
signal to noise ratio at the input of the BCM
receiver is defined by SNR ¼ 10log10ðkYk

2
F=kNk

2
FÞ,

where Y is the complex-valued noise-free tensor of
observations and the tensor N holds zero-mean

white (in all dimensions) Gaussian noise. For each
Monte-Carlo trial, the algorithms are initialized
with 10 different random starting points and the
performance is evaluated after selection of the best
initialization (the one that leads to minimal value of
f). Fig. 3(a) shows the average bit error rate (BER)
over all users versus SNR, for the BCM receiver
based either on ALS or ALSþ ELSCS. The
performance of the (non-blind) MMSE receiver
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and of two semi-blind receivers assuming either the
antenna array response known or the channel
known is also given. The ALS and ALSþ ELSCS
curves coincide, which means that they converge
to the same point, on the average. However, the
mean number of initializations required (out of 10)
to obtain these two curves was 6:6 for ALS and 3:4
for ALSþ ELSCS which illustrates the better
capacity of the latter algorithm to reach the global
minimum.

Fig. 3(b) shows the mean number of iterations
and the mean CPU time required by ALS and
ALSþ ELSCS. The ELSCS scheme allowed to
considerably reduce the number of iterations;
moreover the extra cost per iteration step was
negligible since the time to converge has been
reduced in the same proportion as the number of
iterations.

Fig. 3(c) shows typical curves for ill-conditioned
data. We compare the evolution of the cost function
f for ALS, for ALSþ LS with r ¼ n1=3 as in [15]
and ALSþ ELSCS. In this test, the data are noise-
free. The matrix A has been built such that its
highest singular value is equal to 100 and the other
singular values to 1. We kept the best initialization
among 10 different random starting points. The
stop criterion is fo10�10. We observe that the LS
scheme reduces the number of iterations from 4�
104 to 2� 104. In the same conditions, the ALSþ
ELSCS algorithm escapes from the swamp quickly
since it only requires 3� 103 iterations.

4. Conclusion

We have presented an ELS algorithm for the
decomposition of complex-valued tensors that
follows the PARAFAC model or the BCM. This
scheme looks for the optimal step in C, and thus
allows to escape quickly from swamps that might
occur when the complex data are ill-conditioned. As
a result, the ELSCS scheme inherits the advantages
of its real-valued counterpart and remarkably
improves the convergence speed of the standard
ALS algorithm.

Appendix A

A.1. Derivation of the coefficients cp in Eq. (8)

From Eq. (7), fELSCS can be written as a
polynomial of degree six, fELSCSðmÞ ¼

P6
p¼0 xpmp,

where the coefficients xp only depend on y and the

coefficients of D:

x6 ¼ a11;

x5 ¼ 2a12 cosðyÞ þ 2b12 sinðyÞ;

x4 ¼ a22 þ 2a13 cosð2yÞ þ 2b13 sinð2yÞ;

x3 ¼ 2a14 cosð3yÞ þ 2a23 cosðyÞ þ 2b14 sinð3yÞ þ 2b23 sinðyÞ;

x2 ¼ a33 þ 2a24 cosð2yÞ þ 2b24 sinð2yÞ;

x1 ¼ 2a34 cosðyÞ þ 2b34 sinðyÞ;

x0 ¼ a44:

8>>>>>>>>>>><
>>>>>>>>>>>:

The coefficients cp in (8) are thus given by
cp ¼ ðpþ 1Þxpþ1.

A.2. Derivation of the coefficients dp in Eq. (9)

From Eq. (7), fELSCS can also be written under
the following form:

fELSCSðyÞ ¼ a1 cosð3yÞ þ a2 cosð2yÞ þ a3 cosðyÞ

þ a4 þ b1 sinð3yÞ þ b2 sinð2yÞ þ b3 sinðyÞ,

where the coefficients ai and bj , only depend on m

and the coefficients of D:

a1 ¼ 2m3a14;

a2 ¼ 2m4a13 þ 2m2a24;

a3 ¼ 2m5a12 þ 2m3a23 þ 2ma34;

a4 ¼ m6a11 þm4a22 þm2a33 þ a44;

8>>>><
>>>>:

b1 ¼ 2m3b14;

b2 ¼ 2m4b13 þ 2m2b24;

b3 ¼ 2m5b12 þ 2m3b23 þ 2mb34:

8><
>:

We thus have

dfELSCSðyÞ
dy

¼ � 3a1 sinð3yÞ � 2a2 sinð2yÞ � a3 sinðyÞ

þ 3b1 cosð3yÞ þ 2b2 cosð2yÞ þ b3 cosðyÞ.

After the change of variable t ¼ tanðy=2Þ, and the
substitution cosðyÞ ¼ ð1� t2Þ=ð1þ t2Þ and sinðyÞ ¼
2t=ð1þ t2Þ, we obtain dfELSCSðyÞ=dy ¼

P6
p¼0dptp=

ð1þ t2Þ3; where the coefficients dp do not depend on y:

d6 ¼ �3b1 þ 2b2 � b3;

d5 ¼ �18a1 þ 8a2 � 2a3;

d4 ¼ 45b1 � 10b2 � b3;

d3 ¼ 60a1 � 4a3;

8>>><
>>>:

d2 ¼ �45b1 � 10b2 þ b3;

d1 ¼ �18a1 � 8a2 � 2a3;

d0 ¼ 3b1 þ 2b2 þ b3:

8><
>:
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Appendix B. Supplementary data

Supplementary data associated with this article
can be found in the online version at doi:10.1016/
j.sigpro.2007.07.024.
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