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A Tensor Framework for Nonunitary Joint
Block Diagonalization

Dimitri Nion

Abstract—This paper introduces a tensor framework to solve the
problem of nonunitary joint block diagonalization (JBD) of a set of
real or complex valued matrices. We show that JBD can be seen as a
particular case of the block-component-decomposition (BCD) of a
third-order tensor. The resulting tensor model fitting problem does
not require the block-diagonalizer to be a square matrix: the over-
and underdetermined cases can be handled. To compute the tensor
decomposition, we build an efficient nonlinear conjugate gradient
(NCG) algorithm. In the over- and exactly determined cases, we
show that exact JBD can be computed by a closed-form solution
based on eigenvalue analysis. In approximate JBD problems, this
solution can be used to efficiently initialize any iterative JBD algo-
rithm such as NCG. Finally, we illustrate the performance of our
technique in the context of independent subspace analysis (ISA)
based on second-order statistics (SOS).

Index Terms—Blind source separation, conjugate gradient, in-
dependent subspace analysis, joint block diagonalization (JBD),
second-order statistics, tensor decomposition.

I. INTRODUCTION

L ET be a set of matrices, that can
approximately be jointly block diagonalized

. . .
...

(1)

where or , denotes either the transpose
or the conjugate transpose . The

matrix is partitioned in blocks
, , , the block-diagonal matrix

, , is built from the blocks
and the matrix denotes residual noise.

The joint block diagonalization (JBD) problem consists of the
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estimation of and , given the matrices .
It can be noticed that the JBD model remains unchanged if
one substitutes by and by ,
where is a nonsingular block-diagonal matrix, with arbitrary
blocks of the same dimensions as in , and is an arbitrary
block-wise permutation matrix. The JBD model is essentially
unique when it is only subject to these indeterminacies. Prac-
tically speaking, this means that one can only estimate the
subspaces in an arbitrary order, i.e., the ma-
trices remain unknown, unless additional constraints
are imposed, e.g., a particular algebraic structure such as Van-
dermonde or Toeplitz.

The particular case , of JBD is known as joint di-
agonalization (JD). The JD problem was first investigated under
the unitary constraint ( , where is the

identity matrix), after which several nonunitary algorithms
have emerged, see [1], [2], and references therein. Most of the
nonunitary JD algorithms assume that is square or tall with
full column rank. Recently, it has been shown [3] that, in a tensor
framework, the JD problem can be seen as a particular case
of the PARAllel FACtor (PARAFAC) decomposition [4], [5],
also known as CANonical DECOMPosition (CANDECOMP)
[6], of the third-order tensor built by stacking
the matrices along the third mode. This link was ex-
ploited to build the PARAFAC-based Second-Order Blind Iden-
tification of Underdetermined Mixtures (SOBIUM) algorithm
[3], which covers the overdetermined case ( is tall and full
column rank) but also several underdetermined cases ( is fat
and full row rank), thanks to powerful uniqueness properties of
the PARAFAC decomposition [7]. This equivalence between JD
and PARAFAC can also be exploited for blind separation of con-
volutive mixtures in the time-frequency domain [8].

As a challenging generalization of JD, JBD is becoming a
popular signal processing tool in applications such as BSS of
convolutive mixtures in time-domain [9]–[12], independent
subspace analysis (ISA) [13], [14] or blind localization of mul-
tiple targets in a multistatic MIMO radar system [15]. Existing
JBD techniques can be categorized in two groups:

1) Unitary JBD [9]–[11], [16], [17], where is assumed
square and unitary and is sought as the matrix that makes
the matrices jointly as block diagonal as
possible. This is achieved via the criterion

(2)

or

(3)
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where denotes the Frobenius norm, is the
block diagonal matrix defined by

. . .

given the matrix ( being

matrices) and .
2) Nonunitary JBD, with and full column rank,

such that it admits a left pseudoinverse denoted by
. The matrices may additionally

be assumed positive definite [18] or not [12]. In the latter
case, it was proposed in [12] to seek for the joint block
diagonalizer with the criterion

(4)

for which two algorithms have been proposed: ,
based on gradient descent with optimal step and
based on the relative gradient with optimal step.

However, the minimization of in the nonunitary JBD case
may be problematic for the following reasons:

• additional constraints have to be embedded in the optimiza-
tion strategy to avoid the trivial solution and degen-
erate solutions [19];

• it cannot handle the underdetermined case ; to the
best of our knowledge, none of the existing JBD algorithms
can handle this case;

• it does not guarantee essential uniqueness of the solution
in the overdetermined case , as explained in the
following. Let be a full column rank matrix,

, and such that
. Substitute by ,

where the rows of live in the orthogonal complement
of . It follows that is also solution of (4) but it
is not solution of the JBD problem since has a zero-
block on its diagonal. Also, if one substitutes by

, the matrix remains unchanged but
essential uniqueness of the solution is lost.

For these well-motivated reasons, we will investigate the
nonunitary JBD problem through the JBD subspace-fitting least
squares criterion

(5)

The main contributions of this paper are the following:
i) we show that JBD can be compactly written as a par-

ticular case of the block-component-decomposition in
rank- terms of a third-order tensor [20], [21],
denoted by BCD-( , , ). This tensor-based reformu-
lation of JBD allows immediate use of powerful results
concerning essential uniqueness of the BCD-
to establish a set of sufficient conditions for which JBD
is guaranteed to be essentially unique;

ii) we elaborate a nonlinear conjugate gradient (NCG) algo-
rithm with exact line search for efficiently solving (5),

that works in the over-, under-, and exactly determined
cases;

iii) in the exactly and overdetermined cases we
propose a closed-form solution to the exact JBD problem,
based on the generalized eigenvalue decomposition. If the
JBD problem is not exact (e.g., when is perturbed by
additive noise), this technique can be used to find a good
starting point for any JBD algorithm;

iv) extensive numerical experiments, including a comparison
with and and an ISA-based application
are conducted to illustrate our findings.

Throughout this paper, we will distinguish between the three
following cases.

Case C1: The data are real-valued, i.e., ;
Case C2: The data are complex-valued, i.e., , and
hermitian symmetry is assumed, i.e.,

;
Case C3: The data are complex-valued, and symmetry is
assumed, i.e., .

This paper is organized as follows. In Section II, the JBD
model (1) is rewritten in tensor format. In Section III, the alge-
braic expression of the gradient of is derived. In Section IV,
we build a NCG algorithm to solve (5). In Section V, we pro-
pose a closed form solution to over- and exactly determined JBD
problems. In Section VI, we introduce a new performance index
for evaluation of JBD algorithms. Section VII consists of numer-
ical experiments and Section VIII summarizes our conclusions.

II. TENSOR FORMULATION OF JBD

In this section, we show that the JBD problem can be seen as a
particular case of the BCD- . This link is established
for the case C2 but the derivation is similar for C1 and C3 (it
suffices to substitute by in the second mode).

A. JBD as a Tensor Decomposition

We first need the following definition.
Definition 1. (Mode-n Tensor-Matrix Product): The mode-1

product of a third-order tensor by a matrix
, denoted by , is an -tensor

with elements defined, for all index values, by
. Similarly, the mode-2 product by a matrix

and the mode-3 product by are the
and tensors, respectively, with elements

defined by and
}.

Denote by , ,
the third-order tensors built by stacking the matrices ,

, , respectively, along the third dimension.
The JBD model (1) can be written in tensor format (see Fig. 1)
as follows:

(6)

Since the slices of are exactly block diagonal, (6) is equiv-
alent to

(7)
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Fig. 1. The JBD problem in tensor format. The submatrices �� � � are assumed full column rank. The matrix � � �� � � � � �� � � ,
� � � , may be fat or tall and is assumed full rank.

where is built by stacking the matrices
along the third dimension. Equation (7) is equiva-

lent to

(8)

where denotes the block-wise Kronecker product

is the Kronecker product, is built from as
follows: , is built from in the

same way, and is the matrix, , built as
follows:

...
... (9)

where is the operator that stacks the columns of a matrix
one after each other in a single vector. Hence, the JBD criterion
(5) is equivalent to

(10)

B. Uniqueness of JBD

The Block Component Decompositions (BCD) of a third-
order tensor have been introduced in [21] and can be seen as a
generalization of the PARAFAC decomposition. The BCD of a
third-order tensor in a sum of rank-
terms, denoted by BCD- , is written as

(11)

where , is rank- and
is rank- . Let and

, , .
The following theorem has been derived in [21].

Theorem 1: Suppose that , , ,
, , and that are generic, then the

BCD- of (11) is essentially unique.
We call a tensor generic when its entries can be considered

drawn from continuous probability density functions.

From the previous section, it follows that JBD is a particular
case of the BCD- where is substituted by or

. It can easily be checked in [21] that Theorem 1 remains
valid in this case. Note that the uniqueness condition given by
Theorem 1 is only sufficient. In some cases where it is not satis-
fied, e.g., when is full row rank rather than full column rank,
uniqueness can possibly be still guaranteed but is more difficult
to prove. The uniqueness issue when Theorem 1 is not satis-
fied would deserve further work that is beyond the scope of this
paper.

III. COMPUTATION OF THE GRADIENT

In this section, we derive the algebraic expression of the gra-
dient of w. r. t. and in the cases C1, C2 and C3.

A. Case C1: Real Data

From (1) and (5), with
, where denotes the trace of a matrix.

Derivatives of traces [22] yield

(12)

where denotes the gradient of w. r. t. ,

, , .
From (10), can be written as with

and one gets

(13)

where , ,
.

B. Case C2: Complex Data, Hermitian Symmetry

Let us write where
denotes the real part of and its imaginary
part. Similarly, we write . Derivatives of
traces [22] yield

(14)

(15)

(16)

(17)
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The directions of the maximum rate of change in the real-valued
cost function w. r. t. the complex variables and are
given by the gradients w. r. t. to the conjugate of and [23],
[24]:

(18)

and

(19)

C. Case C3: Complex Data, Symmetry

Similarly, one can show that, in the symmetric case

(20)

and

(21)

IV. A NCG ALGORITHM

A. Algorithm Overview

In this section, we propose a NCG algorithm to solve (5).
NCG has become a popular technique in nonlinear optimiza-
tion; it converges faster than the steepest descent method and
has lower complexity than Newton or Quasi-Newton methods
[25], [26]. In the context of tensor decompositions, such an opti-
mization technique has been proposed for fitting the PARAFAC
model in [27]. Denote by the vector in which
all unknowns have been stacked as follows

(22)

It follows that:

(23)

where denotes the gradient of w. r. t. . The th NCG
iteration consists of the following steps:

Compute the steepest descent
direction: ;
Update the search direction:
compute and ;
Compute the step size ;
Update .

The first iteration is made in the steepest descent direction,
i.e., . The gradient in Step 1 is given by the al-
gebraic expressions derived in Section III. In the following, we
explain how Steps 2 and 3 can be adapted to the JBD optimiza-
tion problem (5), (10).

B. Update of the Search Direction

A crucial point in the update strategy of the search direc-
tion is the choice of the real-valued scalar . Numerous
methods have been proposed in the specialized literature, see
[25] and [26] for a survey. A popular choice is the stabilized
Polak-RibiÃĺre formula

(24)

In practice, NCG algorithms are often coupled with a restart
strategy, i.e., the value is enforced if a restart crite-
rion is satisfied, such that the algorithm is refreshed: the search
direction is reset to a standard steepest descent direction. Con-
sider a cost function that is strongly convex quadratic in a neigh-
borhood of the solution, but nonquadratic everywhere else. The
most popular restart strategy makes use of the observation that
the gradients are mutually orthogonal when the cost function is
quadratic. Thus, a restart can be performed whenever two con-
secutive gradients are far from orthogonal, as measured by the
test

(25)

where a typical value for the parameter is 0.1 [26].

C. Exact Line Search

Given the search direction at iteration , it is crucial
to find a good step-size in this direction. Exact Line Search
(ELS) consists of the computation of the optimal step:

(26)

If the line search is exact, , so that is a
descent direction.1

From the partitioning defined in (22) and (23), Step 2 is equiv-
alent to

where and are the search directions for and , re-
spectively. In the case C2

(27)
where stands for and the superscript

has been omitted for simplicity. In cases C1 and C3, it suffices
to substitute and by and , respectively. It follows
that is a polynomial of degree six in and can easily be

1We have �� � � � ��� � � � �� � � with

�� � � � � ��� � �.
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minimized. This ELS strategy can be improved, without signifi-
cant additional complexity, by seeking for two different optimal
steps and in the search directions and ,
respectively. Then, (27) becomes

(28)

Let us build the matrices and as follows:

(29)

(30)

It is a matter of standard algebraic manipulations to show that

(31)

where

are polynomials of degree four in and

(32)

Solving yields

(33)

and substitution of (33) in (31) yields

(34)

which depends on the variable only. Finally, is estimated
as the real root of that minimizes ,
after which is given by (33).

The resulting algorithm is summarized in Algo-
rithm 1, with the complexity associated to each step expressed
in terms of Real FLoating point OPeration (flop) counts. For in-
stance, the scalar product of dimensional real, respectively,
complex, vectors involves , respectively, , flops.

V. A CLOSED FORM SOLUTION TO EXACT JBD PROBLEMS

In this section, we propose a closed form solution to the exact
(i.e., noise-free) JBD problem, for the exactly determined case

and the overdetermined case . Consider the
exact JBD model

(35)

(the case C1 is considered but the method can be derived in the
same way for cases C2 and C3). Assume that is rank- and
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Fig. 2. Exactly determined case, � � � � �, � � �, � � � � � � �, � � ��, case C1. Criteria from left to right: � � �� , � � �� ,
� � �� , � � �� . Algorithms from left to right: ��	 , ��	 , ��	 , ��	 . (a) Successful initializations. (b) Successful runs. (c) Number
of iterations. (d) Time in sec.

that there exists at least two indices and , such that
and are nonsingular. Let us build the matrix

(36)

The proposed technique relies on the generalized eigenvalue
decomposition (GEVD) of . From (36), the subspace
spanned by the columns of , denoted by , consists
of the eigenvectors of associated to the nonzero
eigenvalues. Denoting by the matrix formed by these eigen-
vectors, can be written (up to the unresolvable JBD ambigu-
ities) as

(37)

where is an a priori unknown permutation matrix that
groups the eigenvectors by . Let us build the matrices

(38)

The matrix can be found by building
and searching the position of the nonzero elements of each
normalized row of .

For approximate JBD problems, this closed form solution can
be used as a good starting point of iterative JBD algorithms, as
illustrated in Section VII. It suffices to select the eigenvectors
of associated to the most significant eigenvalues
and to find the position of the most significant values on each
normalized row of .

VI. PERFORMANCE INDEX

The performance index used in [12] is

(39)

where , is an estimate of and is the -th
square block matrix of . As explained in the introduction,
combination of the optimization criterion (4) with the perfor-
mance index may be misleading since it hides the possible
loss of essential uniqueness.2 For instance, the matrix remains

unchanged in the overdetermined case if is

2if the optimization strategy preserves essential uniqueness, such as the
��	 algorithm, there is no ambiguity in the interpretation of �

substituted by . Moreover, cannot
be used in the underdetermined case.

In order to check that the optimization strategy provides an
estimate of (or its pseudo-inverse) only up to the ambiguities
inherent to the JBD model, one can use another performance
index, described in the following. Denote by an estimate of

. Due to the JBD ambiguities, in case of perfect estimation,
and are linked as follows:

where is an unknown nonsingular block-diagonal matrix and
an unknown block-wise permutation matrix. The objective is

to estimate and such that “matches” , after
which the relative error is defined by

(40)

To estimate , one may proceed by deflation:
i) select the submatrix with the minimal number of

columns from the set ;
ii) for all possible submatrices of consisting of

consecutive columns, compute , the angle be-
tween the subspaces and [28];

iii) the matrix for which is minimal is paired
to . Remove from and from and go back
to i) until each submatrix of has been paired with a
submatrix of . The pairing indicates how to build .

Once estimated, the diagonal blocks of are com-
puted one by one in the least squares sense, ,

, where .
Note that, contrarily to , can also be used in the un-

derdetermined case .

VII. NUMERICAL EXPERIMENTS

A. Noise-Free Exact JBD

In this first set of experiments (Figs. 2, 3, 4), we compare
the performance of the following algorithms for noise-free exact
JBD problems:

i) , the nonunitary JBD algorithm based on Gra-
dient descent with Optimal step proposed in [12] to min-
imize defined in (4);

ii) , the nonunitary JBD algorithm based on the
Relative Gradient with Optimal step also proposed in [12]
to minimize ;
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Fig. 3. Overdetermined case, � � ��,� � �,� � �, � � � � � � �,� � ��, case C2. (a) Successful initializations. (b) Successful runs. (c) Number of
iterations. (d) Time in sec.

Fig. 4. Underdetermined case, � � �, � � �, � � 	, � � � � � �
� � 
,� � ��, case C2. (a) Successful initializations. (b) Successful runs.

iii) , the Steepest Descent JBD algorithm given by
Algorithm 1 to minimise , where is enforced to
impose a steepest descent search direction at every step;

iv) , the Nonlinear Conjugate Gradient JBD algo-
rithm given by Algorithm 1 to minimize .

For fixed dimensions and a chosen case (C1, C2, or C3), 100
exact JBD problems are generated. The matrices and ,

, , are randomly drawn for each
problem, from a zero-mean unit-variance Normal distribution.
For each of the 100 runs, 10 random starting points, generated
with the same distribution as the true matrices, are used to ini-
tialize the four algorithms. For each starting point, the algo-
rithms are stopped whenever one of the following criteria is sat-
isfied

• (S1) ;
• (S2) ;
• (S3) ;

where stands for (algorithms and ) or
(algorithms and ).

In the exactly and overdertemined cases , we store
the final values of , , and obtained after conver-
gence for every run, every starting point and every algorithm (for
the algorithms that minimize , is computed afterwards
from the final estimates and vice-versa). In the underdetermined
case , only and can be used, and their
respective performance is assessed from the values of and

obtained after convergence.
In Fig. 2, we focus on the exactly determined case

. Fig. 2(a) represents the average number of successful initial-
izations over the 100 runs, where an initialization is declared
successful w.r.t. the following criteria: ,

Fig. 5. Impact of the condition number ���� on the number of iterations. Ex-
actly determined case, � � � � �, � � �, � � � � � � �, � � ��,
case C1.

, , . Fig. 2(b) represents the per-
centage of successful runs, where a run is declared successful w.
r. t. one criterion when at least one the ten starting points yields
a final value that satisfies this criterion. Fig. 2(c) represents
the number of iterations averaged over the successful initializa-
tions only whereas Fig. 2(d) represents the average running time
per successful initialization. Comparison between and

confirms that using a conjugate gradient strategy rather
than a steepest descent approach significantly improves the per-
formance: converges to the global minimum more fre-
quently, see Fig. 2(a), (b) and faster, see Fig. 2(c), (d), than

. On the same basis, it can be observed that
also outperforms and .

In Fig. 3, we focus on the overdetermined case ,
. Fig. 3(a) shows that approximately eight initializations

were successful in average for and , for all cri-
teria. Regarding the performance of and , the
criteria and are satisfied by several
initializations whereas the criteria and
are never satisfied. This illustrates the analysis made in the In-
troduction to explain that minimization of by and
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Fig. 6. Exactly determined case, � � � � �, � � �, � � � � � � �,� � ��, case C2. Left: � versus SNR. Right: � versus SNR.

Fig. 7. Underdetermined case, � � �, � � �, � � �, � � ���, � �

� � � � � � 	, case C2.

in the overdetermined case introduces ambiguities
that breaks essential uniqueness.

In Fig. 4, we focus on the underdetermined case3 ,
. An initialization is declared successful w. r. t. the cri-

teria , and it can be observed that
significantly outperforms . For instance, all

runs were successful for , versus 50 percent of the runs
for .

In Fig. 5, we have fixed the matrices , ,
, and for each value of the condition number of

, , we test the ,
and with 50 different random initializations.

The condition number is imposed from an SVD of a randomly
drawn matrix , , after which and are kept
fixed while is changed so as to enforce the desired value of

. For each algorithm, the number of iterations is averaged
over the successful initializations. The conjugate gradient-based
algorithm is far less sensitive to the value of
than and .

3Although uniqueness of JBD is not covered by Theorem 1 in this case, pre-
liminary experiments have been conducted with 
�� to check that each
time the global minimum is reached (with the threshold � � �� ), 
� is
equal to�, only up to the model ambiguities (with the threshold � � �� ).

B. Monte Carlo Simulations

In this second set of experiments (Figs. 6 and 7), we com-
pare the performance of the nonunitary JBD algorithms via
Monte Carlo simulations, with the same stop criteria as be-
fore. From (7), the signal-to-noise ratio (SNR) is defined by

,
where the noise tensor has symmetric slices and is gen-
erated from a zero-mean Normal distribution and variance

. For each value of the SNR, we conduct 200 Monte Carlo
runs, where and , ,
are randomly regenerated for each run, from a zero-mean
unit-variance Normal distribution. For each value of the SNR,

is averaged over the 200 runs. In Fig. 6, the exactly de-
termined case is considered and the performance
of is compared to that of and for
the three following settings: i) a single random initialization
is used; ii) a single EVD-based initialization is used; iii) 10
initializations (one by EVD and nine random) are used and
the best is selected as the one that yields the smallest final
value of ( or , depending on the algorithm). This
experiment shows that the algorithm proposed in
this paper is significantly more accurate than the and

algorithms of [12], for both criteria and . It
can be observed that all algorithms substantially benefit from an
EVD-based initialization, especially in the high SNR regime, as
compared to a single random initialization. Moreover, coupling
the EVD-based initialization with several additional random
initializations significantly improves the performance.

In Fig. 7, the performance of is compared to that of
for the underdetermined case , . It can be

observed that outperforms and that the per-
formance of both algorithms significantly improves when the
number of random initializations increases, up to a certain point
(the EVD-based initialization cannot be used in the underdeter-
mined case).

C. Application: ISA

In this third set of experiments (Figs. 8 and 9), we use the
algorithm in the context of ISA, for SOS-based blind

subspace separation. The mixing system is described in Fig. 8.
We consider primary discrete source signals . For
the th primary source , we generate a set of discrete
sequences and compute the set of secondary
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Fig. 8. Mixing system for the JBD-based ISA application. The primary sources � � � � � � � are assumed mutually uncorrelated. Each primary source is convolved
with a subset of unknown FIR filters. The � secondary sources consist of � subsets; the secondary sources are mutually correlated within the same subset but
mutually uncorrelated with sources from other subsets. The secondary sources are mixed through a linear instantaneous channel modeled by the matrix�. Given
the observations � � � � � � � , the purpose is to estimate the primary sources.

sources associated to this primary source by
, where denotes the linear convolution

operator. Let us stack the secondary sources in
the vector . Then, we assume that the secondary
sources are linearly mixed through an instantaneous mixing
channel, i.e., we get the following classical mixing model

, where is the unknown mixing
matrix, denotes the number of sensors and denotes
the observed signal. Given , the purpose is to estimate the
primary sources.

To solve this BSS problem, we resort to SOS. Let us as-
sume that the primary sources are zero-mean individually cor-
related in time but mutually uncorrelated. The set of secondary
sources generated by the same primary source are assumed mu-
tually correlated, whereas the secondary sources generated by
different primary sources are assumed mutually uncorrelated.
Under these assumptions, the spatial covariance matrices of the
observations satisfy

...

in which is block-diagonal,
. Thus, an estimate of the mixing matrix may be

obtained by JBD of the set .
For a practical illustration of this problem, we proceed as

follows. Fig. 9(a), (b), (c) represents speech signals
used as primary sources, consisting of 64 000 samples each,
sampled at 16 KHz. For each primary source, we set
and we randomly generate 12 sequences , each
of length 50, from a zero-mean unit-variance normal distribu-
tion. The 12 obtained secondary sources are then linearly mixed
through a 14 12 mixing matrix , randomly generated from
a zero-mean unit-variance normal distribution, i.e., we work in
the overdetermined C1 case. Fig. 9(d), (e), (f) represent the first
three mixtures. A set of covariance matrices is com-
puted, with a time lag taking linearly spaced values between 0
anf 200. Fig. 9(g) confirms that is block-diag-
onal, i.e., the secondary sources generated by the same primary
source are mutually correlated but not correlated to the other
secondary sources. The separation task is achieved by

Fig. 9. Results of the JBD-based independent subspace analysis application.
(a) � . (b) � . (c) � . (d) � . (e) � . (f) � . (g) �� �� ��. (h)� �� ��. (i)
�� . (j) �� . (k) �� .

initialized by the EVD-based technique of Section V. Fig. 9(h)
shows that estimation of the mixing matrix is successful since

is a block-wise permuted block-diagonal matrix. Given
, the least squares estimate of the secondary sources is

. Due to the inherent ambiguities of JBD, in case of
perfect estimation, we get , where

and de-
note the th and th group of estimated and true secondary
sources, respectively, that match together (block-wise permuta-
tion ambiguity), and denotes an unknown arbitrary
nonsingular matrix. Thus, we get

...

(41)
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where , , and
. In other words, the estimates of the

secondary sources from the same group are all filtered versions
of the same unknown primary source. Thus, a blind SIMO
(Single Input Multiple Output) system identification step is
required to recover the primary sources instead of filtered
versions of them. This can for instance be achieved via the sub-
space-based technique proposed in [29]. Comparison between
the recovered primary sources—see Fig. 9(i), (j), (k)—with the
true ones shows that the separation and reconstruction stages
are successful.

VIII. CONCLUSION

In this paper, we have shown that nonunitary JBD can be re-
garded as a tensor decomposition. The latter can be computed
by the minimization of a least squares subspace fitting crite-
rion, for which we have proposed an efficient NCG algorithm.
This tensor framework covers the exactly, over-, and underde-
termined nonunitary JBD problems. In the exactly and overde-
termined cases, we have shown that JBD algorithms can effi-
ciently be initialized via an EVD-based closed form solution.
Numerical experiments confirm that significantly out-
performs existing nonunitary JBD algorithms and can success-
fully be applied to SOS-based ISA.
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