A TENSOR-BASED BLIND DS-CDMA RECEIVER USING SIMULTANEOUS MATRIX DIAGONALIZATION

Dimitri Nion ${ }^{(1)}$, Lieven De Lathauwer ${ }^{(1)}$, ${ }^{11}$ ETIS, UMR 8051 (CNRS, ENSEA,UCP), Cergy-Pontoise, France

E-mail: \{nion, delathau\}@ensea.fr
We present a deterministic tensor-based technique for the blind separation-equalization of DSCDMA signals received by an antenna array, in the context of far-field reflections only. Our method relies on the decomposition in terms of rank-(L,L,1) of a third-order tensor. We show that this decomposition can calculated by means of simultaneous diagonalization of a set of matrices, which is more accurate than the standard ALS algorithm.

Communication System

- Parameters and propagation model:
$-R$: Nb of users, transmitting at the same time within the same bandwidth.
- I: Spreading Factor of CDMA codes.
- J : Duration of the observation window (in Symbol Periods).
$-K$: Nb of receiving Antennas.
$-I \times J \times K$ samples collected at the receiver
-Multipath propagation: far-field reflections only (no angular spread) and ISI over L consecutive symbols (large delay spread)
-Chip-Rate Sampled Received Signal: Analytic Form

-Chip-Rate Sampled Received Signal: Algebraic Form

Decomposition in rank-(L,L,1) terms
-Each term of the decomposition contains the information related to one particular user (channel, antenna response and symbols).
-The matrices \mathbf{S}_{r} are Toeplitz.

Computation of the Decomposition by Simultaneous Diagonalization

- Optimization problem: From the knowledge of the tensor of observations \mathcal{Y} only, esti mate the unknowns $\mathbf{H}_{r}, \mathbf{a}_{r}$ and \mathbf{S}_{r} by minimization of the cost function

$$
\begin{equation*}
f(\mathbf{H}, \mathbf{S}, \mathbf{A})=\|\mathcal{Y}-\hat{\mathcal{Y}}\|_{F}^{2}=\left\|\mathcal{Y}-\sum_{r=1}^{R} \hat{\mathbf{H}}_{r} \bullet_{2} \hat{\mathbf{S}}_{r} \bullet 3 \hat{\mathbf{a}}_{r}\right\|_{F}^{2} \tag{1}
\end{equation*}
$$

- Assumptions on the dimensions:

$$
\left\{\begin{array}{c}
I \geq L \tag{2}\\
J \geq L \\
\min (I J, K) \geq R
\end{array}\right.
$$

-Reformulation of the problem:

$$
\hat{\mathcal{Y}}=\sum_{r=1}^{R} \hat{\mathbf{x}}_{r} \bullet \bullet_{3} \hat{\mathbf{a}}_{r},
$$

in which the $(I \times J)$ matrices $\hat{\mathbf{X}}_{r}$ result from $\hat{\mathbf{X}}_{r}=\hat{\mathbf{H}}_{r} \bullet_{2} \hat{\mathbf{S}}_{r}=\hat{\mathbf{H}}_{r} \cdot \hat{\mathbf{S}}_{r}^{T}$

- Consider one matrix representation of $\hat{\mathcal{Y}}: \hat{\mathbf{Y}} \in \mathbb{C}^{J I \times K}$

$$
\begin{equation*}
\hat{\mathbf{Y}}=\left(\operatorname{vec}\left(\hat{\mathbf{X}}_{1}\right) \cdots \operatorname{vec}\left(\hat{\mathbf{X}}_{R}\right)\right) \cdot \hat{\mathbf{A}}^{T}=\tilde{\mathbf{X}} \cdot \hat{\mathbf{A}}^{T} \tag{3}
\end{equation*}
$$

-SVD of $\hat{\mathbf{Y}}$:

$$
\mathbf{Y}=\mathbf{U} \cdot \boldsymbol{\Sigma} \cdot \mathbf{V}^{H}=\mathbf{E} \cdot \mathbf{V}^{H}
$$

-Combine Eqs. (3) and (4): there exists an a priori unknown non-singular matrix $\mathbf{W} \in \mathbb{C}^{R \times R}$ that satisfies

$$
\left\{\begin{array}{c}
\tilde{\mathbf{X}}=\mathbf{E} \cdot \mathbf{W} \\
\hat{\mathbf{A}}^{T}=\mathbf{W}^{-1} \cdot \mathbf{V}^{H}
\end{array}\right.
$$(5)

- How to find $\mathbf{W} \in \mathbb{C}^{R \times R}$?
-The matrix \mathbf{E} is $(J I \times R)$. We denote by \mathbf{E}_{r} the $(I \times J)$ matrix representation of the $r^{\text {th }}$ column of E . We have:

For $r=1 \ldots R$, we thus have

-The coefficients of \mathbf{W} are those of linear combinations of the matrices \mathbf{E}_{r} that yield the rank-L matrices \mathbf{X}_{r}.

- Tool: mapping for rank-L detection (cf paper). Let $\hat{\mathbf{X}} \in \mathbb{C}^{I \times J}$,
$\phi \underbrace{(\hat{\mathbf{X}}, \hat{\mathbf{X}}, \ldots, \hat{\mathbf{X}})}_{(L+1) \text { times }}=0$ if and only if $\hat{\mathbf{X}}$ is at mostrank $-L$
-After some algebraic manipulations (see paper for details), we can show that the matrix W can be estimated by simultaneous diagonalization of the following set of matrices:

- The system can be solved by any algorithm for joint-diagonalization by congruence of a set of matrices.
-Once \mathbf{W} is found, the estimation of \mathbf{A} is given by $\hat{\mathbf{A}}=\mathbf{V}^{*} \cdot \mathbf{W}^{-T}$. The columns of $\hat{\mathbf{H}}_{c}$ can be estimated as the L left singular vectors associated with the L largest singular values of \mathbf{X}_{r}. The matrix $\hat{\mathbf{S}}_{r}$ then corresponds to the product of the first L singular values and the L associated right singular vectors.

Simulation Results

- Parameters: codes of length $I=8, J=50$ QPSK symbols collected, $K=4$ antennas, $L=2$ interfering symbols, $R=4$ users.

-The SD technique implies a new bound for the number of users ($R_{\text {max }}^{S D}$), more relaxed than the sufficient condition previously derived ($R_{\text {max }}^{S C}$).

I	J	K	L	$R_{\text {max }}^{(S C)}$	$R_{\text {max }}^{(S D)}$
4	4	8	2	2	4
4	5	8	2	2	5
4	6	8	2	3	7

