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We present a time-frequency technique for the blind separation and localization of several
sources, where a single scaled and delayed version of each source contributes to each sensor
recording. The separation is performed in the time-frequency domain via an Alternating Least
Squares (ALS) algorithm coupled with a Vandermonde structure enforcing strategy. The Time
Differences Of Arrival (TDOAs) estimates are then exploited to localize the sources individually.

Problem Formulation
• Parameters and propagation model:

– N : nb. of sources sn(t), n = 1, . . . , N .
– M ≥ N : nb. of sensors; received signals rm(t), m = 1, . . . ,M .
– amn: attenuation factor between nth source and mth sensor.
– τmn: Time Of Arrival (TOA), in seconds, between nth source and mth sensor.
– Linear time-shift mixing model: line of sight propagation, no reflections [1].

• Time-shift model:

rm(t) =
N
∑

n=1

amnsn(t− τmn) (1)

Time-frequency reformulation
• Parameters:

– F : Length of each DFT frame, f = 1, . . . , F .
– P : nb. of (possibly overlapping) frames, p = 1, . . . , P .
– rm(p, f ): (p, f )th time-frequency sample of the mth recording.
– sn(p, f ): (p, f )th time-frequency sample of the nth source.
– Dmn: Time Of Arrival (TOA), in number of samples, between nth source and mth sensor.
– ω = exp(−2jπ/F ).

• Time-Frequency discrete mixing model:

– Analytic model:

rm(p, f ) ≃

N
∑

n=1

amnω
(f−1)Dmnsn(p, f ), f = 1, . . . , F. (2)

– Matrix format:
R(f ) ≃ H(f ) · S(f ), f = 1, . . . , F, (3)

where

* [R(f )]m,p
def
= rm(p, f ) is the M × P time-frequency observed matrix,

* [S(f )]n,p
def
= sn(p, f ) is the N × P rank-N time-frequency source matrix,

* [H(f )]m,n
def
= amnω

(f−1)Dmn is the M ×N rank-N mixing matrix.

– Additional structure: Vandermonde vectors

hmn = [Hmn(1),Hmn(2), . . . ,Hmn(F )]T =
[

amn, amnω
Dmn, . . . amnω

(F−1)Dmn

]T
(4)

– Tensor format:

R =

N
∑

n=1

Sn •2 H
T
n . (5)

R

=

N
∑

n=1

HnSn

F

F

F
F

P
P

M

M

(diagonal slices) (Vandermonde vectors)

• Model ambiguities:

R =

N
∑

n=1

(Sn •2 Z
−1
n ) •2 (H

T
n · Zn). (6)

– To preserve the whole structure, Zn has to be diagonal and un
def
= diag(Zn) has to be a

Vandermonde vector:

Ĥn = diag([αn, αnωφn, . . . , αnω
(F−1)φn])Hn, (7)

with unknown arbitrary scaling factor αn and phase factor φn.

– In case of perfect separation, we get the estimates: ãmn
def
= amnαn and D̃mn

def
= Dmn+ φn.

– The ambiguities {αn, φn} only depend on the source and can be removed by choosing a

reference sensor, say M̃ , and work with the relative attenuation factor a(rel)mn
def
= ãmn

ãM̃n
= amn

aM̃n

and the relative Time Difference Of Arrival (TDOA) D(rel)
mn

def
= D̃mn − D̃M̃n = Dmn −DM̃n.

ALS algorithm with Vandermonde structure
• Cost function and optimization problem

γ
def
=

F
∑

f=1

‖R(f )−H(f ) · S(f )‖2. (8)

min
{H(f),S(f)}Ff=1

γ

s.t. hmn defined in (4) is a Vandermonde vector, ∀m, ∀n,

STEP 1: Time-frequency computation
Build R(f ) ∈ CM×P , f = 1, . . . , F from FFT of P overlapping windowed frames of recorded
signals. (Typical parameters: F = 2048, Hanning window, 50% overlap).

STEP 2: Blind separation
—— Initialization ———-
stop=0, k = 1, Kmax (e.g., Kmax = 200) and ǫ (e.g., ǫ = 10−6). Randomly generate Ŝ(f ) ∈
C
N×P , f = 1, . . . , F . Possibly try several random starting points.

—– Start alternating updates ———
while stop=0

k = k + 1

(2.a). Ĥ(LS)(f ) = R(f ) · Ŝ(f )†, f = 1, . . . , F.

(2.b). { ˆ̃Dmn, ˆ̃amn} ← periodogram(ĥ
(LS)
mn ), m = 1, . . . ,M, n = 1, . . . , N., see [2].

ĥ
(V DM)
mn ← [ˆ̃amn, ˆ̃amnw

ˆ̃Dmn, . . . , ˆ̃amnw
(F−1) ˆ̃Dmn], m = 1, . . . ,M, n = 1, . . . , N.

(2.c). Ŝ(f ) = Ĥ
(V DM)(f )† ·R(f ), f = 1, . . . , F.

if (k = Kmax) or (|γ(k) − γ(k−1)| ≤ ǫ);stop=1;end
end

STEP 3: Blind localization

- Choose ref. sensor M̃ and compute TDOAs D̂
(rel)
mn = ˆ̃Dmn −

ˆ̃DM̃n.
- Each source is localized individually on the basis of its TDOAs; its x and y coordinates can
be estimated in the least squares sense, see [3,4].

Numerical experiments
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(a) Spatial configuration
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(b) MSE of TDOA
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(c) % of non-perfectly estimated TDOAs
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(d) MSE of source coordinates

Figure 1: Spatial configuration and results of Monte-Carlo experiments.
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