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Content of the talk

Context: MIMO radar system.

Problem: Detection and localization of multiple targets present in  
the same range-bin.

State of the art: Radar-imaging localization methods 
(e.g. Capon, MUSIC)

Limits: Radar-imaging fails for closely spaced targets +  
sensitivity to Radar Cross Section (RCS) fluctuations

Contribution: Novel method, deterministic, exploits multilinear
algebraic structure of received data 

PARAFAC Decomposition of an observed tensor
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Roadmap

I.    Introduction   (problem statement + data model)

II.   State of the art  (Localization via Capon beamforming and MUSIC)

III.  Localization via PARAFAC 

IV.  Conclusion and perspectives 
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I. Introduction: problem statement

Tx Rx

K targets in the same range-bin

Transmitter Tx and receiver Rx equipped with closely spaced antennas

Target = a point source in the far field

=  target

Problem : estimate the number of targets and their DODs and DOAS
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I. Introduction: parameters

Mt transmit colocated antennas

Mr receive colocated antennas

K targets in the range-bin of interest

A(θ)=[a(θ1), …, a(θK) ] the MtxK transmit steering matrix

B(α)=[b(α1), …, b(αK) ] the MrxK receive steering matrix

S=[s1(t); s2(t); …; sMt(t)] is MtxL, holds Mt mutually orthogonal
transmitted pulse waveforms, with
L samples per pulse period
Q consecutive pulses are transmitted

βkq RCS reflection coeff. of  target k during pulse q
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I. Introduction: data model
Assumption : Swerling case II target model

« Receive and Transmit steering matrices B(α) and A(θ) constant over the 
duration of Q pulses while the target reflection coefficients βkq are varying
independently from pulse to pulse».
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qΣ=Mr x L received data

Times of arrival known (targets in the same range-bin). 

Right multiply by (1/L)SH and simplify (1/L)SSH = I

Mr x Mt received data 
after matched filtering
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II. State of the art: single-pulse radar-imaging

Beamforming techniques [Xu, Li & Stoica]. 

Example: Capon Beamforming . Suppose colocated arrays (α=θ).

Radar-imaging techniques working on per-pulse basis:
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II. State of the art: single-pulse radar-imaging
Typical Capon and MUSIC spectra for a given pulse

Widely spaced targets (-30°,10°,40°) Closely spaced targets (-30°,-25°,-20°)

Problem 1: single lobe occurs for closely located targets

Problem 2: update spectrum for each new pulse scintillation due to fading 
(fluctuations of RCS coeff. from pulse to pulse)
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II. State of the art: multiple-pulses radar-imaging
Q : Mitigate RCS fluctuations?  first need a multi-pulse data model

)(αB= )(θTAqΣ qZ+qY

q
T
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.)(θA )(αB=
T
qc=

Q pulses 
(concatenation)

vectorize

Y .)([ θA )](αB= TC Z+
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II. State of the art: multiple-pulses radar-imaging
Radar-imaging techniques working on a multi-pulse basis:

Y .)([ θA )](αB= TC
Capon beamforming [Yan, Li, Liao]
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II. State of the art: multiple-pulses radar-imaging

MUSIC, Mt=Mr=4

MUSIC, Mt=Mr=9Capon, Mt=Mr=9

Capon, Mt=Mr=4

{ } { } { } { }°−°°°°=°°−°°°== 45,50,30,25,20,65,40,30,35,40,5 kkK αθ
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III. Localization via PARAFAC: overview

Problems:

Capon and MUSIC 2D-imaging work on multi-pulse basis but fail if no 
distinguishable lobe for each target (e.g. closely located targets)

Capon and MUSIC spectra have to be computed for each pair of angles 
time consuming for dense angular grid

Our contribution: starting from the same data model,

Y .)([ θA )](αB= TC
exploitation of the algebraic structure of Y is sufficient for blind estimation of 
A(θ), B(α) and C.

Indeed Y follows the well-known PARAFAC model.
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III. Localization via PARAFAC: model

Mr x Mt matrix observed Q times, q=1,…,Q.  B(α) and A(θ) fixed over Q pulses.

)(αB= )(θTAqΣ qZ+qY
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( )θTA
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MtMr

Q

K
K

QxK matrix C, [C]qk=βqk

cK

+

c1

b(α1)

+ …=
a(θ1)

b(αK)

a(θK)

PARAFAC decomposition:
Y =Sum of K rank-1 tensors.

Each target contribution is a 
rank-1 tensor
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III. Localization via PARAFAC: summary

Given the (MrxMtxQ) tensor Y , compute its PARAFAC decomposition in K 
terms to estimate A(θ), B(α) and C.

Several algorithms in the literature (e.g. Alternating Least Squares 
(ALS), ALS+Enhanced Line Search, Levenberg-Marquardt, Simultaneous
Diagonalization, …)

Key point: under some conditions (next slide), PARAFAC is unique up to 
trivial indeterminacies: 

Columns of A(θ), B(α) and C arbitrarily permuted (same permutation)

Columns of A(θ), B(α) and C arbitrarily scaled (scaling factor removed by 
recovering the known array manifold structure on the steering matrices 
estimates, after which the DODs and DOAs are extracted).
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III. Localization via PARAFAC: uniqueness

Condition 1: A(θ) and B(α) full rank and C full-column rank. If 

)1(2112 −≥−−≥ KK)(M)M(MMK rrtt and
then uniqueness is guaranteed a.s. [De Lathauwer].

Condition 2: A(θ) and B(α) are full rank Vandermonde matrices and C full-
column rank. If 

KMMMMMM rtrtrt ≥−≥ ),min(3),max(  and
then uniqueness is guaranteed a.s. [Jiang, Sidiropoulos, Ten Berge].

Mt=Mr 3 4 5 6 7 8

Kmax
condition 1

4 9 14 21 30 40

Kmax
condition 2

6 12 20 30 42 56
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III. Localization via PARAFAC: simulations

CAPON MUSIC PARAFAC

Mt=Mr=4

Mt=Mr=9

Mt=Mr=4

Mt=Mr=9 Mt=Mr=9

Mt=Mr=4

{ } { } { } { }°−°°°°=°°−°°°== 45,50,30,25,20,65,40,30,35,40,5 kkK αθ
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III. Localization via PARAFAC: simulations

K=4 targets, 

Mt = Mr = 4  and Mt =Mr =6,

100 Monte-Carlo runs

Angles randomly generated
for each run (with minimum 
inter-target spacing of 5°)
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IV. Conclusion

PARAFAC = deterministic alternative to radar-imaging (Capon, MUSIC, etc)

Guaranteed identifiability

RCS fluctuations from pulse to pulse = time diversity
= 1 dimension of the observed tensor

PARAFAC outperforms MUSIC and Capon 

Peak detection in radar-imaging fails for closely located targets

PARAFAC = estimation based on exploitation of strong algebraic structure of 
observed data.

Extension (work in progress):

Generalization to the case of multiple sufficiently spaced transmit and receive
sub-arrays.
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Appendix: Target tracking via adaptive PARAFAC
« Adaptive algorithms to track the PARAFAC decomposition »

[Nion & Sidiropoulos 2009]
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LINK = adaptive algorithms to track the PARAFAC decomposition
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5 moving targets. Estimated trajectories. Comparison between Batch PARAFAC
(applied repeatedly) and PARAFAC-RLST (« Recursive Least Squares Tracking »)

Appendix: Target tracking via adaptive PARAFAC
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