

Technical University of Crete Department of Electronic and Computer Engineering

A PARAFAC-based technique for detection and localization of multiple targets in MIMO radar systems

by Dimitri Nion* & Nicholas D. Sidiropoulos*

* Technical University of Crete, Chania, Crete, Greece

(E-mails: <u>nikos@telecom.tuc.gr</u>, <u>nion@telecom.tuc.gr</u>)

Conference ICASSP 2009, April 19-24, 2009, Taipei, Taiwan

Context: MIMO radar system.

Problem: Detection and localization of multiple targets present in the same range-bin.

State of the art: Radar-imaging localization methods (e.g. Capon, MUSIC)

Limits: Radar-imaging fails for closely spaced targets + sensitivity to Radar Cross Section (RCS) fluctuations

Contribution: Novel method, deterministic, exploits multilinear algebraic structure of received data → PARAFAC Decomposition of an observed tensor

- I. Introduction (problem statement + data model)
- II. State of the art (Localization via Capon beamforming and MUSIC)
- **III.** Localization via PARAFAC
- IV. Conclusion and perspectives

I. Introduction: problem statement

- \rightarrow K targets in the same range-bin
- \rightarrow Transmitter Tx and receiver Rx equipped with closely spaced antennas
- \rightarrow Target = a point source in the far field

Problem : estimate the number of targets and their DODs and DOAS

M_r receive colocated antennas

K targets in the range-bin of interest

 $\mathbf{A}(\theta) = [\mathbf{a}(\theta_1), ..., \mathbf{a}(\theta_K)]$ the M_txK transmit steering matrix

 $\mathbf{B}(\alpha) = [\mathbf{b}(\alpha_1), \dots, \mathbf{b}(\alpha_K)]$ the M_rxK receive steering matrix

S=[$s_1(t)$; $s_2(t)$; ...; $s_{Mt}(t)$] is M_txL, holds M_t mutually orthogonal transmitted pulse waveforms, with

L samples per pulse period

Q consecutive pulses are transmitted

 β_{kq} RCS reflection coeff. of target k during pulse q

Assumption : Swerling case II target model

« Receive and Transmit steering matrices $B(\alpha)$ and $A(\theta)$ constant over the duration of Q pulses while the target reflection coefficients β_{kq} are varying independently from pulse to pulse».

$$\mathbf{X}_{q} = \mathbf{B}(\alpha) \underbrace{diag([\beta_{1q},...,\beta_{Kq}])}_{= \Sigma_{q}} \mathbf{A}^{T}(\theta) \mathbf{S} + \mathbf{W}_{q}, \quad q = 1,...,Q$$

 \rightarrow Times of arrival known (targets in the same range-bin).

→ Right multiply by $(1/L)S^{H}$ and simplify $(1/L)SS^{H} = I$

$$\mathbf{Y}_{q} = \mathbf{B}(\alpha)\Sigma_{q}\mathbf{A}^{T}(\theta) + \mathbf{Z}_{q}, \quad q = 1,...,Q$$

M_r x M_t received data after matched filtering

II. State of the art: single-pulse radar-imaging

Radar-imaging techniques working on per-pulse basis:

$$\mathbf{X}_q = \mathbf{B}(\alpha) \Sigma_q \mathbf{A}^T(\theta) \mathbf{S} + \mathbf{W}_q, \quad q = 1, ..., Q$$

→ Beamforming techniques [Xu, Li & Stoica].

Example: Capon Beamforming. Suppose colocated arrays ($\alpha = \theta$).

$$\hat{\boldsymbol{\beta}}(\boldsymbol{\theta}) = \frac{\mathbf{b}^{H}(\boldsymbol{\theta})\mathbf{R}_{XX}^{-1}\mathbf{X}_{q}\mathbf{S}^{H}\mathbf{a}^{*}(\boldsymbol{\theta})}{L[\mathbf{b}^{H}(\boldsymbol{\theta})\mathbf{R}_{XX}^{-1}\mathbf{b}(\boldsymbol{\theta})][\mathbf{a}^{T}(\boldsymbol{\theta})\mathbf{a}^{*}(\boldsymbol{\theta})]}, \qquad \mathbf{R}_{XX} = \frac{1}{L}\mathbf{X}_{q}\mathbf{X}_{q}^{H}$$

\rightarrow MUSIC estimator.

$$P_{MUSIC}(\theta) = \frac{1}{\mathbf{b}^{H}(\theta)\mathbf{E}_{w}\mathbf{E}_{w}^{H}\mathbf{b}(\theta)}, \quad \mathbf{E}_{w} = \text{noise eigenvectors of } \mathbf{R}_{\mathbf{XX}}$$

II. State of the art: single-pulse radar-imaging

Problem 1: single lobe occurs for closely located targets

□ <u>Problem 2</u>: update spectrum for each new pulse \rightarrow scintillation due to fading (fluctuations of RCS coeff. from pulse to pulse) ⁸

II. State of the art: multiple-pulses radar-imaging

Q : Mitigate RCS fluctuations? \rightarrow first need a multi-pulse data model

II. State of the art: multiple-pulses radar-imaging

1

Radar-imaging techniques working on a multi-pulse basis:

$$\mathbf{Y} = [\mathbf{A}(\theta) \odot \mathbf{B}(\alpha)] \mathbf{C}^{T}$$

Capon beamforming [Yan, Li, Liao]

$$P_{Capon}(\theta, \alpha) = \frac{1}{(\mathbf{a}(\theta) \otimes \mathbf{b}(\alpha))^{H} \mathbf{R}_{YY}^{-1}(\mathbf{a}(\theta) \otimes \mathbf{b}(\alpha))}$$

MUSIC

$$P_{MUSIC}(\theta, \alpha) = \frac{1}{(\mathbf{a}(\theta) \otimes \mathbf{b}(\alpha))^{H} \mathbf{E}_{w} \mathbf{E}_{w}^{H} (\mathbf{a}(\theta) \otimes \mathbf{b}(\alpha))}$$
$$\mathbf{E}_{w} = \text{noise eigenvectors of } \mathbf{R}_{YY}$$

II. State of the art: multiple-pulses radar-imaging

III. Localization via PARAFAC: overview

Problems:

□ Capon and MUSIC 2D-imaging work on multi-pulse basis **but** fail if no distinguishable lobe for each target (e.g. closely located targets)

❑ Capon and MUSIC spectra have to be computed for each pair of angles
→ time consuming for dense angular grid

 \rightarrow Our contribution: starting from the same data model,

$$\mathbf{Y} = [\mathbf{A}(\theta) \odot \mathbf{B}(\alpha)] \mathbf{C}^{T}$$

exploitation of the algebraic structure of **Y** is sufficient for blind estimation of $A(\theta)$, $B(\alpha)$ and **C**.

Indeed Y follows the well-known PARAFAC model.

III. Localization via PARAFAC: model

 $M_r \times M_t$ matrix observed Q times, q=1,...,Q. **B**(α) and **A**(θ) fixed over Q pulses.

III. Localization via PARAFAC: summary

Given the (M_rxM_txQ) tensor \mathcal{Y} , compute its PARAFAC decomposition in K terms to estimate **A**(θ), **B**(α) and **C**.

→ Several algorithms in the literature (e.g. Alternating Least Squares (ALS), ALS+Enhanced Line Search, Levenberg-Marquardt, Simultaneous Diagonalization, ...)

□ **Key point:** under some conditions (next slide), PARAFAC is unique up to trivial indeterminacies:

> Columns of $\mathbf{A}(\theta)$, $\mathbf{B}(\alpha)$ and \mathbf{C} arbitrarily permuted (same permutation)

> Columns of $\mathbf{A}(\theta)$, $\mathbf{B}(\alpha)$ and \mathbf{C} arbitrarily scaled (scaling factor removed by recovering the known array manifold structure on the steering matrices estimates, after which the DODs and DOAs are extracted).

III. Localization via PARAFAC: uniqueness

Condition 1: $A(\theta)$ and $B(\alpha)$ full rank and **C** full-column rank. If

 $K \ge 2 \text{ and } M_t(M_t - 1)M_r(M_r - 1) \ge 2K(K - 1)$

then uniqueness is guaranteed a.s. [De Lathauwer].

Condition 2: $A(\theta)$ and $B(\alpha)$ are full rank Vandermonde matrices and C fullcolumn rank. If

 $\max(M_t, M_r) \ge 3$ and $M_tM_r - \min(M_t, M_r) \ge K$

then uniqueness is guaranteed a.s. [Jiang, Sidiropoulos, Ten Berge].

M _t =M _r	3	4	5	6	7	8
K _{max} condition 1	4	9	14	21	30	40
K _{max} condition 2	6	12	20	30	42	56

III. Localization via PARAFAC: simulations

$K = 5, \{\theta_k\} = \{40^\circ, 35^\circ, 30^\circ, -40^\circ, 65^\circ\}, \{\alpha_k\} = \{20^\circ, 25^\circ, 30^\circ, 50^\circ, -45^\circ\}$

III. Localization via PARAFAC: simulations

K=4 targets, $M_t = M_r = 4$ and $M_t = M_r = 6$, 100 Monte-Carlo runs Angles randomly generated for each run (with minimum inter-target spacing of 5°)

- PARAFAC = deterministic alternative to radar-imaging (Capon, MUSIC, etc)
- Guaranteed identifiability
- RCS fluctuations from pulse to pulse = time diversity

= 1 dimension of the observed tensor

- PARAFAC outperforms MUSIC and Capon
- > Peak detection in radar-imaging fails for closely located targets

PARAFAC = estimation based on exploitation of strong algebraic structure of observed data.

Extension (work in progress):

Generalization to the case of multiple sufficiently spaced transmit and receive sub-arrays.

Appendix: Target tracking via adaptive PARAFAC

« Adaptive algorithms to track the PARAFAC decomposition » [Nion & Sidiropoulos 2009]

LINK = adaptive algorithms to track the PARAFAC decomposition

Appendix: Target tracking via adaptive PARAFAC

5 moving targets. Estimated trajectories. Comparison between Batch PARAFAC (applied repeatedly) and PARAFAC-RLST (« Recursive Least Squares Tracking »)

