Tensor-Based Models for
Blind DS-CDMA Receivers
by Dimitri Nion and Lieven De Lathauwer

ETIS Lab., CNRS UMR 8051
6 avenue du Ponceau, 95014 CERGY
FRANCE

ASILOMAR 2007
November 4-7 2007, Pacific Grove, USA

Context

- Research Area: Blind Source Separation (BSS)
- Application: Wireless Communications (DS-CDMA system here)
> System: Multiuser DS-CDMA, uplink, antenna array receiver
P Propagation: P1 Instantaneous channel (single path)
P2 Multipath Channel with Inter-Symbol-Interference (ISI) and farfield reflections only (from the receiver point of view)

P3 Multipath Channel (ISI) and reflections not only in the far-field (specular channel model)
$>$ Assumptions: No knowledge of the channel, neither of CDMA codes, noise level and antenna array response (BLIND approach)
$>$ Objective: Estimate each user's symbol sequence
> Method: - Deterministic: relies on multilinear algebra

- How? store observations in a third order tensor and decompose it in a sum of users' contributions
> Idea: - Tensor Model «richer » than matrix model

DS-CDMA system: cooperative vs. blind

Blind Approach: Why?

Several motivations among others:
$>$ Elimination or reduction of the learning frames: more than 40% of the transmission rate devoted to training in UMTS
$>$ Training not efficient in case of severe multipath fading or fast time varying channels
> Applications: eavesdropping, source localization, ...
> If learning sequence unavailable or partially received

Blind Approach: How? (1)

Blind Approach: How?

Introduction

I. Tensor Decompositions

1. Single path only (instantaneous channel):
\rightarrow PARAFAC decomposition
2. Multipath Channel with ISI and far-field reflections only :
\rightarrow Block-Component-Decomposition in rank-(L,L,1) terms : BCD(L,L,1)
3. Multipath Channel with ISI and reflections not only in the far-field:
\rightarrow Block-Component-Decomposition in rank-(L,P,.) terms : BCD(L,P,.)
II. Algorithms to compute tensor decompositions
II. Simulation Results

Conclusion and Perspectives

PARAFAC decomposition

If single path only (instantaneous mixture), y follows a PARAFAC decomposition [Sidiropoulos, Giannakis \& Bro, 2000].
Analytic Model: $\quad y_{i j k}=\sum_{r=1}^{R} h_{r} c_{i r} s_{j r} a_{k r}$

Algebraic Model:

c_{r} holds the I 'chips' $\mathrm{r}^{\text {th }}$ user's spreading code
a_{r} holds the response of the K antennas
s_{r} holds the J consecutive symbols transmitted by user r
h_{r} fading factor of the instantaneous channel

Part I: Tensor Decompositions

BCD-(L,L,1)

If multi-paths in the far field + ISI, y follows a
« Block Component Decomposition in rank-(L,L,1) terms », BCD-(L,L,1) [De Lathauwer \& De Baynast, 2003], [Nion \& De Lathauwer, SPAWC 2007].

Analytic Model:

$$
y_{i j k}=\sum_{r=1}^{R} a_{k r} \sum_{l=1}^{L} h_{r}(i+(l-1) I) s_{j-l+1}^{(r)}
$$

Algebraic Model: | Linterfering |
| :--- |
| symbols |

Part I: Tensor Decompositions
BCD-(L,P,.)
If multi-paths not only in the far-field + ISI , y follows a BCD-(L,P,.)
[Nion \& De Lathauwer, ICASSP 2005].
Analytic Model:

$$
y_{i j k}=\sum_{r=1}^{R} \sum_{p=1}^{P} a_{k}\left(\theta_{r p}\right) \sum_{l=1}^{L} h_{r p}(i+(l-1) I) s_{j-l+1}^{(r)}
$$

1 path = 1 delay, 1 angle of arrival and 1 fading coefficient

Unknowns for each decomposition

Introduction

I. Les décompositions tensorielles
II. Algorithms to compute Tensor Decompositions

1. Algorithm 1: ALS ("Alternating Least Squares")
2. Algorithm 2: ALS + LS ("Line Search")
3. Algorithm 3: LM ("Levenberg-Marquardt")
III. Simulation Results

Conclusion et Perspectives

Objective of the proposed algorithms

$>$ Decomposition of y \longleftrightarrow Estimation of components \mathbf{A}, \mathbf{S} and \mathbf{H}
$>$ Minimize frobenius norm of residuals. Cost function:

$$
\Phi=\|\mathrm{Y}-\operatorname{Tens}(\hat{\mathbf{H}}, \hat{\mathbf{S}}, \hat{\mathbf{A}})\|_{F}^{2} \quad \text { Tens }=\text { PARAFAC or DCB-(L,L,1) or DCB-(L,P,.) }
$$

Useful Tool: « Matricize » the tensor of observations

Algorithm 1: ALS « Alternating Least Squares »

> Principle: Alternate between least squares update of the 3 matrices $A=\left[A_{1}, \ldots, A_{R}\right], S=\left[S_{1}, \ldots, S_{R}\right]$ et $H=\left[H_{1}, \ldots, H_{R}\right]$.

Initialization: $\hat{\mathbf{A}}^{(0)}, \hat{\mathbf{H}}^{(0)}, k=1$
\longrightarrow while $\left|\Phi^{(k-1)}-\Phi^{(k)}\right|>\varepsilon \quad\left(\right.$ e.g. $\left.\varepsilon=10^{-6}\right)$
$\hat{\mathbf{S}}^{(k)}=\mathbf{Y}_{\mathbf{J} \times \mathbf{I K}} \cdot\left[\mathbf{Z}_{1}\left(\hat{\mathbf{A}}^{(k-1)}, \hat{\mathbf{H}}^{(k-1)}\right)\right]^{\dagger}$
$\hat{\mathbf{H}}^{(k)}=\mathbf{Y}_{\mathbf{I} \times \mathbf{K J} \mathbf{J}} \cdot\left[\mathbf{Z}_{2}\left(\hat{\mathbf{S}}^{(k)}, \hat{\mathbf{A}}^{(k-1)}\right)\right]^{\dagger}$
$\hat{\mathbf{A}}^{(k)}=\mathbf{Y}_{\mathbf{K} \times \mathbf{J I}} \cdot\left[\mathbf{Z}_{3}\left(\hat{\mathbf{H}}^{(k)}, \hat{\mathbf{S}}^{(k)}\right)\right]^{\dagger}$
$k \leftarrow k+1$

Convergence of ALS

Because of long swamps that might occur, we propose 2 algorithms that improve convergence speed.

Algorithm 2: Insert a Line Search step in ALS

For each iteration, perform linear interpolation of the 3 components A, H and S from their values at the 2 previous iterations.

Algorithm 3: LM « Levenberg-Marquardt »

$>$ Concatenate vectorized unknowns $\operatorname{vec}(\mathrm{A}), \operatorname{vec}(\mathrm{H})$ and s in a long vector p
> Update p:
> Gauss-Newton:
> Levenberg-Marquardt:
$\left(\mathbf{J}^{H} \mathbf{J}+\lambda \mathbf{I}\right) \Delta \mathbf{p}^{(k)}=-\mathbf{g}$
$>$ The matrix $\left(\mathbf{J}^{H} \mathbf{J}+\lambda \mathbf{I}\right)$ is positive definite: solve (3) by Cholesky decomposition and Gaussian elimination.
$>$ According to the condition number of $\mathrm{JHJ}+\lambda \mathbf{I}$, update λ in each iteration.

- If $\left(\mathbf{J}^{H} \mathbf{J}+\lambda \mathbf{I}\right)$ ill-conditioned then increase λ :
get closer to gradient descent update $\Delta \mathbf{p}^{(k)} \approx-\frac{1}{\lambda} \mathbf{g}$
- If $\left(\mathbf{J}^{H} \mathbf{J}+\lambda \mathbf{I}\right)$ well-conditioned then decrease λ :
get closer to Gauss-Newton update

$$
\left(\mathbf{J}^{H} \mathbf{J}\right) \Delta \mathbf{p}^{(k)} \approx-\mathbf{g}
$$

Convergence of algorithms ALS, ALS+LS et LM

Gauss Newton (quadratic convergence)

LM and ALS+ELSCS converge much faster than standard ALS, especially for difficult problems: the length of swamps is considerably reduced.

Introduction
I. Tensor Decompositions
II. Algorithms to compute Tensor Decompositions
III. Simulation Results

Conclusion et Perspectives

Impact of number of antennas

BCD-(L,P,.) with: spreading factor $\mathrm{I}=12, \mathrm{~J}=100$ symbols, $\mathrm{L}=2$ interfering symbols, $\mathrm{P}=2$ paths per user and 10 random initializations, + AWGN

$\mathrm{K}=4$ antennas and $\mathrm{R}=5$ users

$\mathrm{K}=6$ antennas and $\mathrm{R}=3$ users

Part III: Simulation Results

Impact of Near-Far effect

$$
\mathfrak{y}=\sum_{r=1}^{R} \alpha_{r} \frac{\mathfrak{y}_{r}}{\left\|\mathscr{y}_{\mathrm{r}}\right\|_{F}}+\mathfrak{B} \quad \kappa(\mathfrak{y})=\frac{\max \left(\alpha_{r}\right)}{\min \left(\alpha_{r}\right)}
$$

BCD-(L,L,1) with spreading factor $\mathrm{I}=4, \mathrm{~J}=100$ symbols, $\mathrm{K}=4$ antennas, $\mathrm{L}=2$ interfering symbols, $R=5$ users and 10 random initializations, + AWGN

Note: more users than antennas ($\mathrm{R}>\mathrm{K}$) and overloaded system ($\mathrm{R}>\mathrm{l}$)

$\kappa(y)=1$

$\kappa(\mathscr{y})=5$

Over-estimation of the number of paths \mathbf{P}

y built with $\mathrm{P}=3$ paths for each user.
Decomposition calculated with over-estimation of $P(P=4$ and $P=5)$ and underestimation of $P(P=2)$.

MSE of symbol matrix vs. SNR

Conclusion

Tensor Models:

> PARAFAC receiver: ok if single path (instantaneous mixture)
$>$ BCD receivers: multipaths + ISI (blind separation and equalization)

Approach:

$>$ Deterministic, exploits multi-linearity of received signal, i.e. algebraic structure of tensor of observations. 1 diversity = 1 dimension of this tensor.

Algorithms:

> standard ALS sensitive to swamps that appear with ill-conditioned data or severe Near-Far effect
$>$ ALS+ELSCS and LM offers much better performance.

Performances:

$>$ Blind BCD receivers potentially very close to MMSE, provided that enough diversity is exploitable.

Uniqueness (not in this talk):

$>$ Maximum number of users admissible in the system depends on the dimensions of the problem.

