Levenberg-Marquardt Computation of the Block Factor Model for Blind Multi-User Access in Wireless Communications

by Dimitri NION and Lieven DE LATHAUWER

Laboratoire ETIS, CNRS UMR 8051 6 avenue du Ponceau, 95014 CERGY

FRANCE

14 th European Signal Processing Conference EUSIPCO 2006

September 4-8, Florence, ITALY

Keywords

$>$ Research Area: Blind Source Separation (BSS)
> Application: Wireless Communications (DS-CDMA system here)
> Constraints: Multiuser system, multipath propagation, Inter Symbol Interference (ISI), Gaussian Noise
> Assumptions: No knowledge of the channel, neither of CDMA codes, noise level and antenna array response (BLIND approach)
$>$ Objective: Separate each user's contribution and estimate information symbols
> Method: - Deterministic: relies on multilinear algebra

- How? store observations in a third order tensor and decompose it in a sum of users' contributions
$>$ Power: - No orthogonality constraints between factors
- Tensor Model «richer» than matrix model

Plan

Introduction

1. PARAFAC Decomposition
1.1 Concept
1.2 Uniqueness of the decomposition
1.3 Application: direct path propagation
1.4 Algorithm: Standard ALS
2. Block Factor Model (BFM) Decomposition
2.1 Problem: multipath propagation with ISI
2.2 Received Signals: Analytic and algebraic forms
2.2 Uniqueness of the Decomposition
2.4 Algorithms: ALS vs. Levenberg-Marquardt
3. Simulation Results

Conclusion

Overview of a wireless communication system

$>$ The R users transmit at the same time within the same bandwidth towards the antenna array.
$>$ We want to estimate their signals without knowledge of the learning seq. (i.e. BLIND estimation)

Blind Signal Separation: Why?

Several motivations among others:
$>$ Elimination or reduction of the learning frames: more than 40% of the transmission rate devoted to training in UMTS
$>$ Training not efficient in case of severe multipath fading or fast time varying channels
> Applications: eavesdropping, source localization, ...
$>$ If learning seq. is unavailable or partially received

Blind Signal Separation: How?

Overview of usual techniques

\rightarrow Usual formulation: X = H S (matrix decomposition)
X : observation matrix
H: channel matrix
S: source matrix
Unknown
$>$ How identify S ?

- Temporal prop. (FA, CM, ...)
- Statistical prop. (HOS, ICA, ...)
- Spatial prop. (array geometry)
\rightarrow estimate DOA's (ESPRIT, MUSIC)
\rightarrow extract signal

Blind Signal Separation: How?

Our approach: Tensor decomposition

Exploit 3 available diversities:

\rightarrow Antenna array $\quad \rightarrow$ Spatial Diversity
\rightarrow Collect samples (J.Ts) \rightarrow Temporal Diversity
$>$ Temporal over-sampling (at the chip rate) \rightarrow Spectral Diversity
> The methods we develop can be applied in systems where 3 diversities are available (e.g. MIMO CDMA)

Build a 3 ${ }^{\text {rd }}$ order Tensor with the observations:

The original data will be estimated by means of:
$>$ Standard PARAFAC (PARAllel FACtor) decomposition
$>$ Block Factor Model (BFM) decomposition

1. PARAFAC Decomposition (PARAllel FACtor analysis)
(Harshman 1970, Bro 1997, Sidiropoulos 2000)

Direct Path Propagation

PARAFAC
 Concept

Well-known method: decompose the tensor of

 observations in a sum of a minimum of rank-1 terms

Each user contribution is a rank-1 tensor, i.e. built from 3 loading vectors

Constraint: Uniqueness of the decomposition

Loading Matrices $\begin{cases}A=\left[a_{1} \ldots a_{R}\right] & \in C^{I \times R} \\ B=\left[b_{1} \ldots b_{R}\right] & \in C^{J \times R} \\ C=\left[c_{1} \ldots c_{R}\right] & \in C^{K \times R}\end{cases}$
PARAFAC decomposition unique if (sufficient condition):

$$
k(A)+k(B)+k(C) \geq 2(R+1)
$$

(k:Kruskal rank)
$>$ Bound on the max. number of users R
> No orthogonality constraints on loading matrices (Sidiropoulos et al.,2000)

For the $r^{\text {th }}$ user:
a_{r} contains the I chips of the CDMA code
b_{r} contains the J symbols successively emitted
c_{r} contains the response of the K antennas

2. Block Factor Model (BFM) decomposition

(A New Tensor Decomposition that generalizes PARAFAC)
(Nion and De Lathauwer, ICASSP 2006, SPAWC 2006)
\Rightarrow Uplink CDMA, Multipath Propagation with ISI

BFM
 Propagation model: Multipath

$>$ One path $=$ One angle of Arrival = One channel modeled by FIR filter.
$>$ We assume P paths per user.
$>$ Memory of the Channel \rightarrow ISI. We assume L interfering symbols per user.

Received Signal (analytic expression)

$>\mathrm{x}_{\mathrm{ijk}}$: $\mathrm{i}^{\text {th }}$ sample (chip) within the $\mathrm{j}^{\text {th }}$ symbol period of the overall signal received by the $k^{\text {th }}$ antenna
$>a_{k}\left(\theta_{r p}\right):$ response of the $k^{\text {th }}$ antenna to $p^{\text {th }}$ path incoming from the $r^{\text {th }}$ user (angle of arrival $\theta_{\text {rp }}$)
$>\mathrm{h}_{\mathrm{rp}}$: convolution of the impulse response of the $\mathrm{p}^{\text {th }}$ channel with the CDMA code of the $r^{\text {th }}$ utilisateur
$\left.>s^{(r)}\right)_{j+1+1}$: symbol transmitted by the $r^{\text {th }}$ user at time $(j-l+1) T_{s}$

BFM
 Received Signal (algebraic form):BFM

Uniqueness of the BFM decomposition

Sufficient condition for identifiability: (De Lathauwer 2005)

$$
\min \left(\left\lfloor\frac{I}{\max (L, P)}\right\rfloor, R\right)+\min \left(\left\lfloor\frac{J}{L}\right\rfloor, R\right)+\min \left(\left\lfloor\frac{K}{P}\right\rfloor, R\right) \geq 2 R+2
$$

Computation of the BFM decomposition (1)

$>$ Objective: minimize $\Phi=\left\|X-X^{(n)}\right\|^{2}$, with $X^{(n)}$ built from $A^{(n)}, H^{(n)}$ and $S^{(n)}$
> ALS (Alternating Least Squares) algorithm

- Alternate update of unknown factors in the LS sense

$$
\left\{\begin{array}{lllll}
\mathbf{S}_{r}^{(n)} & \text { from } \mathbf{H}_{r}^{(n-1)}, & \mathbf{A}_{r}^{(n-1)} & \text { and } & \mathbf{M}_{I \times K J} \\
\mathbf{H}_{r}^{(n)} & \text { from } \mathbf{A}_{r}^{(n-1)}, & \mathbf{S}_{r}^{(n)} & \text { and } & \mathbf{M}_{J \times I K} \\
\mathbf{A}_{r}^{(n)} & \text { from } & \mathbf{S}_{r}^{(n)}, & \mathbf{H}_{r}^{(n)} & \text { and }
\end{array} \mathbf{M}_{K \times J I}\right.
$$

Computation of the BFM decomposition (2)

$>$ Objective: minimize $\Phi=\left\|X-X^{(n)}\right\|^{2}$, with $X^{(n)}$ built from $A^{(n)}, H^{(n)}$ and $S^{(n)}$
> LM (Levenberg Marquardt) algorithm = « damped Gauss-Newton »

- Concatenate all unknowns in a vector p
- $\Phi=\left\|X-X^{(n)}\right\|^{2}=\|\mathbf{r}(\mathbf{p})\|^{2} \quad(\mathbf{r}=$ mapping: $\mathbf{p} \rightarrow \mathbf{r}(\mathbf{p})$, vector of residuals)
- Find update of \mathbf{p} by solving modified G.N. normal eq :

$$
\left(J^{T} J+\lambda I\right) \Delta p^{(n)}=-g
$$

- gradient: $\mathbf{g}=\frac{\partial \Phi}{\partial \mathbf{p}} \quad$ Jacobian: $j_{m f}=\frac{\partial \mathbf{r}_{m}(\mathbf{p})}{\partial \mathbf{p}_{f}}$
- damping factor: λ is increased until $J^{\top} J$ is full-rank

Results of simulations: Noise-free case (1)

\square No Noise: global minimum of $\Phi=\left\|X-X^{(n)}\right\|^{2}$ is 0

Fig: Nb of iterations for each of 80 simulations

Parameters:
$\left[\begin{array}{lllll}{\left[\begin{array}{llll}\text { J K L P }\end{array}\right]=} \\ {\left[\begin{array}{llllll}16 & 30 & 4 & 3 & 2\end{array}\right]}\end{array}\right.$

Mean nb. of iter: ALS : 76

LM : 18

Results of simulations: Noise-free case (2)

\Longrightarrow No Noise: global minimum of $\Phi=\left\|X-X^{(n)}\right\|^{2}$ is 0

Fig: Evolution of Φ vs. iteration Index (1 simulation)

Parameters:

[1 J K L P R] =
$\left[\begin{array}{lllll}16 & 30 & 4 & 3 & 2\end{array}\right]$

Stop crit. : $\Phi<10$
ALS : 61 iter.
LM : 15 iter.

LM: gradient steps then GN steps

Results of Monte Carlo simulations (1)

\square AWGN: BER vs. SNR (Blind, Semi-Blind \& Non-Blind)
Fig: Mean BER vs. SNR (1000 MC runs)

> Parameters:
> $\left[\begin{array}{lllll}\text { J K L P R }\end{array}=\right.$ $\left[\begin{array}{llllll}16 & 30 & 4 & 3 & 2 & 5\end{array}\right]$

Results of Monte Carlo simulations (2)

AWGN: BER vs. SNR (Blind, Semi-Blind \& Non-Blind)
Fig: Mean nb. of iter. vs. SNR (1000 MC runs)
Mean Number of iterations vs. SNR

Parameters:

[I J K L P R] = $\left[\begin{array}{lllll}16 & 30 & 4 & 3 & 2\end{array}\right]$

Conclusion

PARAFAC : Well-known model (since 70's)

- Tensor Decomposition in terms of rank-1
- Blind receiver for direct-path propagation

BFM (Block Factor Model):

- Generalization of PARAFAC
- Powerful blind receiver for multi-path propagation with ISI
- Weak assumptions: no orthogonality constraints, no independence between sources, no knowledge on CDMA code, neither of antenna response and Channel.
- Fundamental Result: Uniqueness of the decomp. to guarantee identifiability
- Performances close to non-blind MMSE
- Algorithms: LM faster than ALS in terms of iter.

