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Keywords

� Research Area: Blind Source Separation (BSS)

� Application: Wireless Communications (DS-CDMA system here)

� Constraints: Multiuser system, multipath propagation, Inter Symbol
Interference (ISI), Gaussian Noise

� Assumptions: No knowledge of the channel, neither of CDMA codes, noise 
level and antenna array response (BLIND approach)

� Objective: Separate each user’s contribution and estimate
information symbols

� Method: - Deterministic: relies on multilinear algebra

- How? store observations in a third order tensor and
decompose it in a sum of users’ contributions 

� Power: - No orthogonality constraints between factors

- Tensor Model  « richer » than matrix model



3

Introduction

1. PARAFAC Decomposition
1.1 Concept
1.2 Uniqueness of the decomposition
1.3 Application: direct path propagation
1.4 Algorithm: Standard ALS

2. Block Factor Model (BFM) Decomposition
2.1 Problem: multipath propagation with ISI
2.2 Received Signals: Analytic and algebraic forms
2.2 Uniqueness of the Decomposition
2.4 Algorithms: ALS vs. Levenberg-Marquardt

3. Simulation Results

Conclusion

Plan
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Overview of a wireless                 
communication system

Introduction

� The R users transmit at the same time within the same bandwidth
towards the antenna array.

� We want to estimate their signals without knowledge of the 
learning seq.  (i.e. BLIND estimation)

Antenna array

(K antennas)

user1 Base 
Station

userR

= learning sequence
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Blind Signal Separation: Why?
Introduction

Several motivations among others:

� Elimination or reduction of the learning frames: more than
40 % of the transmission rate devoted to training in UMTS

� Training not efficient in case of severe multipath fading or 
fast time varying channels

� Applications: eavesdropping, source localization, …

� If  learning seq. is unavailable or partially received
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Blind Signal Separation: How?

Overview of usual techniques

� Usual formulation:   X = H . S (matrix decomposition)

X : observation matrix

H : channel matrix

S : source matrix
Unknown

� How identify S ?

� Temporal prop. (FA, CM, …)

� Statistical prop. (HOS, ICA, …)

� Spatial prop. (array geometry) 

→ estimate DOA’s (ESPRIT, MUSIC)

→ extract signal 
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Introduction

Blind Signal Separation: How? 

Exploit 3 available diversities:

� Antenna array → Spatial Diversity

� Collect samples (J.Ts)  → Temporal Diversity

� Temporal over-sampling (at the chip rate) → Spectral Diversity 

� The methods we develop can be applied in systems where 3 
diversities are available (e.g. MIMO CDMA)

Build a 3rd order Tensor with the observations:

The original data will be estimated by means of:

� Standard PARAFAC (PARAllel FACtor) decomposition  

� Block Factor Model (BFM) decomposition

Our approach: Tensor decomposition
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1. PARAFAC Decomposition

(PARAllel FACtor analysis) 

(Harshman 1970 , Bro 1997, Sidiropoulos 2000)

Direct Path Propagation
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PARAFAC

Concept

Well-known method: decompose the tensor of 
observations in a sum of a minimum of rank-1 terms

c1 cR

I

K
J

=

a1

bRb1

aR

++ …

User 1 User R
Xobs

Each user contribution is a rank-1 tensor, i.e. built
from 3 loading vectors
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PARAFAC

Constraint: Uniqueness of the decomposition

PARAFAC decomposition unique if (sufficient condition):  

k(A)+k(B)+k(C) ≥≥≥≥ 2(R+1)

(k:Kruskal rank)

� Bound on the max. number of users R

� No orthogonality constraints on loading matrices
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Loading Matrices
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Application: direct-path only propagation 
(Sidiropoulos et al.,2000)

For the rth user:

ar contains the I chips of the CDMA code

br contains the J symbols successively emitted

cr contains the response of the K antennas

PARAFAC

c1 cR

I

K
J

=

a1

bRb1

aR

++ …

User 1 User R
Yobs
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2. Block Factor Model (BFM) decomposition

(A New Tensor Decomposition that generalizes PARAFAC )

( Nion and De Lathauwer, ICASSP 2006, SPAWC 2006)

Uplink CDMA, Multipath Propagation with ISI
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Propagation model: Multipath

� One path = One angle of Arrival = One channel modeled by 
FIR filter.

� We assume P paths per user.

� Memory of the Channel → ISI. We assume L interfering
symbols per user.  

BFM

Antenna array

(K antennas)

User 1 Base 
Station

User R

path(1,1)

path(1,R)

path(2,R)

path(2,1)
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Received Signal (analytic expression)

∑ ∑ ∑
= = =

+−−+=
R

r

P

p

L

l

r
ljrprpkijk sIlihax

1 1 1

)(
1))1(()(θ

� xijk : ith sample (chip) within the jth symbol period of the overall signal 
received by the kth antenna

� ak(θrp) : response of the kth antenna to pth path incoming from the rth

user (angle of arrival θrp)

� hrp : convolution of the impulse response of the pth channel with the
CDMA code of the rth utilisateur

� s(r)
j-l+1 : symbol transmitted by the rth user at time (j-l+1)Ts

Contribution of R 
users

Contribution of P 
paths

Contribution of L 
interfering symbols

BFM
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Received Signal (algebraic form):BFM

R: nb. of users L: nb. of interfering symbols 

I:  length of CDMA code P: nb. of paths 

J: nb. of symbols collected K: nb. of antennas
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Uniqueness of the BFM decomposition

Sufficient condition for identifiability: (De Lathauwer 2005)
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Computation of the BFM decomposition (1)

� ALS (Alternating Least Squares) algorithm

[ ]kKJI cat XM =×

[ ]iIKJ cat XM =×

][ jJIK cat XM =×

� Objective: minimize Φ=||X-X(n)||² , with X(n) built from A(n),H(n) and S(n)

diversity(I)
Spectral 

Spatial diversity (K)

=

=

=

Temporal diversity (J)

X Xk

Xi

Xj

� Alternate update of unknown factors in the LS sense
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Computation of the BFM decomposition (2) 

� LM (Levenberg Marquardt) algorithm = « damped Gauss-Newton »

gpIJJ nT −=∆+ )()( λ

� Objective: minimize Φ=||X-X(n)||² , with X(n) built from A(n),H(n) and S(n)

� Concatenate all unknowns in a vector p

� Φ = || X-X(n) ||² = || r(p) ||²   (r = mapping:  p → r(p) , vector of residuals)

� Find update of p by solving modified G.N. normal eq :

� gradient: Jacobian: 

� damping factor:  λ is increased until JTJ is full-rank

p
g

∂
Φ∂=

f

m
mfj

p
pr

∂
∂= )(
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No Noise: global minimum of  Φ=||X-X(n)||² is 0

Parameters:

[I  J  K  L  P  R] =

[16  30  4  3  2  5]

Results of simulations: Noise-free case (1)

Mean nb. of iter:

ALS : 76

LM : 18

Fig: Nb of iterations for each of 80 simulations
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Results of simulations: Noise-free case (2)

Stop crit. : Φ < 10-
6

ALS : 61 iter.
LM :  15 iter.

LM: gradient steps
then GN steps

Fig: Evolution of Φ vs. iteration Index   (1 simulation)
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AWGN: BER vs. SNR  (Blind, Semi-Blind & Non-Blind)

Results of Monte Carlo simulations (1)
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Fig: Mean BER vs. SNR  (1000 MC runs)
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Results of Monte Carlo simulations (2)
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Conclusion

� PARAFAC : Well-known model (since 70’s) 

� Tensor Decomposition in terms of rank-1

� Blind receiver for direct-path propagation

� BFM (Block Factor Model): 

� Generalization of PARAFAC

� Powerful blind receiver for multi-path propagation with ISI

� Weak assumptions: no orthogonality constraints, no independence between
sources, no knowledge on CDMA code, neither of antenna response and
Channel. 

� Fundamental Result: Uniqueness of the decomp. to guarantee identifiability

� Performances close to non-blind MMSE

� Algorithms: LM faster than ALS in terms of iter.


