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Tucker/ HOSVD and PARAFAC
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[Tucker, 1966] / [De Lathauwer, 2000]
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PARAFAC [Harshman, 1970]



From PARAFAC/HOSVD to Block Components 
Decompositions (BCD) [De Lathauwer and Nion, SIMAX 2008]
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The BCD(L,L,1) as a generalization of PARAFAC.

� Generalization of PARAFAC [De Lathauwer, de Baynast, 2003]
BCD-(1,1,1)=PARAFAC

� Unknown matrices: 
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� BCD-(L,L,1) is said essentially unique if only remaining ambiguities are:

� Arbitrary permutation of the blocks in AAAA and B B B B and of the columns of CCCC

� Rotational freedom of each block (block-wise subspace estimation) + 
scaling ambiguity on the columns of CCCC



The BCD(L,L,1) as a constrained Tucker model.
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The BCD-(L ,L , 1) can be seen as a particular case of Tucker model, where the 
core tensor is « block-diagonal », with L by L blocks on its diagonal.



BCD(L,L,1): existing results on algorithms and 
uniqueness

� Several usual algorithms used to compute PARAFAC have been adapted to 
the BCD(L,L,1).

Example 1: ALS algorithm (alternate between Least Squares updates of 
unknowns A, B and C).

Example 2: ALS with Enhanced Line Search to speed up convergence.

Example 3: Gauss-Newton based algorithms (Levenberg-Marquardt).

� First result on essential uniqueness, in the generic sense [De Lathauwer, 2006]
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Starting point of this work

� In 2005, De Lathauwer has shown that, under certain assumptions on the 
dimensions, PARAFAC can be reformulated as a simultaneous diagonalization 
(SD) problem. This yields:

� A very fast and accurate algorithm to compute PARAFAC

� A new, relaxed, uniqueness bound 

� Is it possible to generalize these results to the BCD-(L,L,1)?

� If so, does it also yield a fast algoritm and a new uniqueness bound (more 
relaxed than the one on previous slide)?

� The answer is YES



Roadmap

I. Introduction
� Tensor decompositions: PARAFAC, Tucker, Block-Component Decompositions

II. Block-Component Decomposition in Rank-(L,L,1) Terms
� Definition of the BCD-(L,L,1), Uniqueness bound, ALS Algorithm

III.   Reformulation of BCD-(L,L,1) in terms of simultaneous 
matrix diagonalization

� New algorithm, relaxed uniqueness bound

IV.  An application of the BCD-(L,L,1): blind source separation 
in telecommunications

V. Conclusion and Future Research



RRC ×∈∃W

HT VWC

WEX

⋅=
⋅=

−1

~

Reformulation of DCB-(L,L,1) in terms of SD: overvi ew (1)

Y
AAAAr

ccccrrrr

BBBBr
T∑

r= 1

R

= ∑
r= 1

R
ccccrrrr

I

J

L

L

XXXXrI

J

=
rank L

Assumption:

i.e., K has to be a sufficiently long dimension 
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BCD-(L,L,1) in matrix format :
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Goal: Find W, i.e., find the linear combinations of the columns of E that yield 
vectorized rank-L matrices.  



Reformulation of DCB-(L,L,1) in terms of SD: overvi ew (2)

HT VWC

WEX

⋅=
⋅=

−1

~
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Note 2: For PARAFAC (i.e. L=1), we have  
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is a Khatri-Rao structure recovery problem, and can be solved 
by simultaneous diagonalization [De Lathauwer, 2005]



Reformulation of DCB-(L,L,1) in terms of SD: overvi ew (3)

Remark: on typical matrix factorization problems in Signal Processing

Problem formulation: Given only an (MxN) rank-R observed matrix X, find the 
(MxR) and (RxN) matrices H and S s.t.      X = H S

M X = H S
N N

M

R

R

But infinite number of solutions  X = (HF) (F-1S)  so we need extra constraints.

Examples:

� ICA (Independent Component Analysis) � find H that makes the R source signals 
in S as much statistically independent as possible. Blind Source Separation.

� FIR filter estimation � H holds the impulse response of a FIR filter, and S is 
Toeplitz. Blind Channel Estimation in telecommunications.

� Source localization � H is Vandermonde and holds the individual response of the M 
antennas to the R source signals, each signal impinging with a Direction Of Arrival 
(DOA).

� Non-negative matrix factorization  

� Finite Alphabet projection � S holds numerical symbols 
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Reformulation of DCB-(L,L,1) in terms of SD: overvi ew (4)

Tool: mapping         for rank-L detection. Let , then 

iif is at most rank-L.
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Reformulation of DCB-(2,2,1) in terms of SD

Technical details

Trilinear mapping         for rank-2 detection:2φ
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Reformulation of DCB-(2,2,1) in terms of SD

Technical details
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Reformulation of DCB-(2,2,1) in terms of SD:

A new uniqueness bound

« The                     tensors of the set        are linearly independent »)( 3
2 RCR −+ Ω

� Crucial assumption in the reformulation: 

� One can show that this is generically true if 

� The generalization to any value of L yields that the DCB-(L,L,1) is unique if

� To be compared to the old uniqueness bound
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Reformulation of DCB-(2,2,1) in terms of SD

Uniqueness

New bound, L={2,3,4}

Old bound, L={2,3,4}
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Channel impulse 
response of user r (spans 
L symbol periods for each 
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Data model: DS-CDMA system

Fast time: I=number of samples 
within a symbol period

Slow time: observation during J 
period symbols

Spatial dimension: K 
receiving antennas

R users 
transmitting at the 
same time

Array steering vector (response 
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Performance: comparison between 

ALS and SD algorithms



Conclusion

� Reformulation of PARAFAC in terms of Simultaneous Diagonalization 
(SD) yields a fast and accurate algorithm, with improved identifiability 
results [De Lathauwer, 2005]. 

The starting point for this reformulation is that one dimension is long 
enough: , where I,J and K can be interchanged.

� The BCD-(L,L,1), which is a generalization of PARAFAC, can also be 
formulated in terms of SD, which also yield a fast and accurate algorithm 
and improved identifiability result.

The starting point for this reformulation is that the third dimension (K) is 
long enough . I,J and K can not be interchanged

� When the long dimension is I or J, i.e., or 

we have recently shown (CAMSAP 2009), that the BCD-(L,L,1) can be 
reformulated as Joint-Block-Diagonalization problem. This yields a new 
set of identifiability results.
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