Decomposing a Third-Order Tensor in Rank-(L,L,1) Terms by Means of Simultaneous Matrix Diagonalization

Dimitri Nion \& Lieven De Lathauwer
K.U. Leuven, Kortrijk campus, Belgium E-mails: Dimitri.Nion@kuleuven-kortrijk.be
Lieven.DeLathauwer@kuleuven-kortrijk.be

2009 SIAM Conference on Applied Linear Algebra,
Session MS33 "Computational Methods for Tensors"
Monterey, USA, October 26-29, 2009

Roadmap

I. Introduction
\rightarrow Tensor decompositions: PARAFAC, Tucker, Block-Component Decompositions
II. Block-Component Decomposition in Rank-(L,L,1) Terms
\rightarrow Definition of the BCD-(L,L,1), Uniqueness bound, ALS Algorithm
III. Reformulation of BCD-(L,L,1) in terms of simultaneous matrix diagonalization
\rightarrow New algorithm, relaxed uniqueness bound
IV. An application of the BCD-(L,L,1): blind source separation in telecommunications
V. Conclusion and Future Research

Roadmap

I. Introduction

\rightarrow Tensor decompositions: PARAFAC, Tucker, Block-Component Decompositions
II. Block-Component Decomposition in Rank-(L,L,1) Terms
\rightarrow Definition of the BCD-(L,L, 1), Uniqueness bound, ALS Algorithm
III. Reformulation of BCD-(L,L,1) in terms of simultaneous matrix diagonalization
\rightarrow New algorithm, relaxed uniqueness bound
IV. An application of the BCD-(L,L,1): blind source separation in telecommunications
V. Conclusion and Future Research

Tucker/ HOSVD and PARAFAC

From PARAFAC/HOSVD to Block Components
 Decompositions (BCD) [De Lathauwer and Nion, SIMAX 2008]

Roadmap

I. Introduction

\rightarrow Tensor decompositions: PARAFAC, Tucker, Block-Component Decompositions
II. Block-Component Decomposition in Rank-(L,L,1) Terms
\rightarrow Definition of the BCD-(L,L,1), Uniqueness bound, ALS Algorithm
III. Reformulation of BCD-(L,L, 1) in terms of simultaneous matrix diagonalization
\rightarrow New algorithm, relaxed uniqueness bound
IV. An application of the BCD-(L,L,1): blind source separation in telecommunications
V. Conclusion and Future Research

The BCD(L,L,1) as a generalization of PARAFAC.

- Generalization of PARAFAC [De Lathauwer, de Baynast, 2003] BCD-(1,1,1)=PARAFAC
- Unknown matrices:

- BCD-(L,L,1) is said essentially unique if only remaining ambiguities are:
\rightarrow Arbitrary permutation of the blocks in A and B and of the columns of C
\rightarrow Rotational freedom of each block (block-wise subspace estimation) + scaling ambiguity on the columns of C

The BCD(L,L,1) as a constrained Tucker model.

The BCD-(L, L , 1) can be seen as a particular case of Tucker model, where the core tensor is « block-diagonal », with L by L blocks on its diagonal.

$+\ldots+\underset{\mathbf{A}_{R}}{ }$

$B C D(L, L, 1)$: existing results on algorithms and uniqueness

- Several usual algorithms used to compute PARAFAC have been adapted to the $B C D(L, L, 1)$.

Example 1: ALS algorithm (alternate between Least Squares updates of unknowns A, B and C).

Example 2: ALS with Enhanced Line Search to speed up convergence.
Example 3: Gauss-Newton based algorithms (Levenberg-Marquardt).
\square First result on essential uniqueness, in the generic sense [De Lathauwer, 2006]

$$
\begin{equation*}
L R \leq I J \text { and } \min \left(\left\lfloor\frac{I}{L}\right\rfloor, R\right)+\min \left(\left\lfloor\frac{J}{L}\right\rfloor, R\right)+\min (K, R) \geq 2(R+1) \tag{1}
\end{equation*}
$$

Starting point of this work

- In 2005, De Lathauwer has shown that, under certain assumptions on the dimensions, PARAFAC can be reformulated as a simultaneous diagonalization (SD) problem. This yields:
>A very fast and accurate algorithm to compute PARAFAC
> A new, relaxed, uniqueness bound
- Is it possible to generalize these results to the BCD-(L,L,1)?
- If so, does it also yield a fast algoritm and a new uniqueness bound (more relaxed than the one on previous slide)?
- The answer is YES

Roadmap

I. Introduction

\rightarrow Tensor decompositions: PARAFAC, Tucker, Block-Component Decompositions
II. Block-Component Decomposition in Rank-(L,L,1) Terms
\rightarrow Definition of the BCD-(L,L,1), Uniqueness bound, ALS Algorithm
III. Reformulation of BCD-(L,L, 1) in terms of simultaneous matrix diagonalization
\rightarrow New algorithm, relaxed uniqueness bound
IV. An application of the BCD-(L,L,1): blind source separation in telecommunications
V. Conclusion and Future Research

Reformulation of DCB-(L,L,1) in terms of SD: overview (1)

BCD-(L,L,1) in matrix format :
$\mathbf{Y}=\left(\operatorname{vec}\left(\mathbf{X}_{1}\right) \cdots \operatorname{vec}\left(\mathbf{X}_{R}\right)\right) \cdot \mathbf{C}^{T}=\tilde{\mathbf{X}} \cdot \mathbf{C}^{T}$
SVD of \mathbf{Y} (generically rank-R):

$$
\begin{equation*}
\mathbf{Y}=\mathbf{U} \cdot \boldsymbol{\Sigma} \cdot \mathbf{V}^{H}=\mathbf{E} \cdot \mathbf{V}^{H} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \exists \mathbf{W} \in C^{R \times R} \\
& \left\{\begin{array}{l}
\tilde{\mathbf{X}}=\mathbf{E} \cdot \mathbf{W} \\
\mathbf{C}^{T}=\mathbf{W}^{-1} \cdot \mathbf{V}^{H}
\end{array}\right.
\end{aligned}
$$

Goal: Find W, i.e., find the linear combinations of the columns of \mathbf{E} that yield vectorized rank-L matrices.

Reformulation of DCB-(L,L,1) in terms of SD: overview (2)

Note 1: Once W found, the unknown matrices A, B, C of the BCD-(L,L,1) follow

$$
\tilde{\mathbf{X}}=\left(\operatorname{vec}\left(\mathbf{X}_{1}\right) \cdots \operatorname{vec}\left(\mathbf{X}_{R}\right)\right)
$$

$$
=\left(\operatorname{vec}\left(\mathbf{A}_{1} \mathbf{B}_{1}^{T}\right) \cdots \operatorname{vec}\left(\mathbf{A}_{R} \mathbf{B}_{R}^{T}\right)\right)
$$

Matricize and estimate \mathbf{A}_{1} and \mathbf{B}_{1} from best rank-L approximation.

Matricize and estimate
\mathbf{A}_{R} and \mathbf{B}_{R} from best
rank-L approximation.

Note 2: For PARAFAC (i.e. L=1), we have

$$
\begin{aligned}
\tilde{\mathbf{X}} & =\left(v e c\left(\mathbf{a}_{1} \mathbf{b}_{1}^{T}\right), \cdots, v e c\left(\mathbf{a}_{R} \mathbf{b}_{R}^{T}\right)\right) \\
& =\left(\mathbf{b}_{1} \otimes \mathbf{a}_{1}, \cdots, \mathbf{b}_{R} \otimes \mathbf{a}_{R}\right) \\
& =\mathbf{B} \circ \mathbf{A} \quad \text { where } \circ \text { is the Khatri- Rao product }
\end{aligned}
$$

$\Longleftrightarrow \widetilde{\mathbf{X}}=\mathbf{E} \cdot \mathbf{W}$ is a Khatri-Rao structure recovery problem, and can be solved by simultaneous diagonalization [De Lathauwer, 2005]

Reformulation of DCB-(L,L,1) in terms of SD: overview (3)

Remark: on typical matrix factorization problems in Signal Processing
Problem formulation: Given only an (MxN) rank-R observed matrix \mathbf{X}, find the (MxR) and (RxN) matrices \mathbf{H} and \mathbf{S} s.t. $\quad \mathbf{X}=\mathbf{H} \mathbf{S}$

But infinite number of solutions $\mathbf{X}=(\mathbf{H F})\left(\mathbf{F}^{-1} \mathbf{S}\right)$ so we need extra constraints.

Examples:

\square ICA (Independent Component Analysis) \rightarrow find \mathbf{H} that makes the R source signals in \mathbf{S} as much statistically independent as possible. Blind Source Separation.
\square FIR filter estimation $\rightarrow \mathbf{H}$ holds the impulse response of a FIR filter, and \mathbf{S} is Toeplitz. Blind Channel Estimation in telecommunications.Source localization $\boldsymbol{\rightarrow} \mathbf{H}$ is Vandermonde and holds the individual response of the M antennas to the R source signals, each signal impinging with a Direction Of Arrival (DOA).
\square Non-negative matrix factorization
\square Finite Alphabet projection $\boldsymbol{\rightarrow} \mathbf{S}$ holds numerical symbols

Reformulation of DCB-(L,L,1) in terms of SD: overview (4)

How to find the coefficients of the linear combinations of the \mathbf{E}_{r} that yield rank-L matrices?

Tool: mapping ϕ_{L} for rank-L detection. Let $\mathbf{X}_{r} \in C^{I \times J}$, then $\phi_{L}\left(\mathbf{X}_{r}, \mathbf{X}_{r}, \ldots, \mathbf{X}_{r}\right)=0$
iif $\quad \mathbf{X}_{r}$ is at most rank-L.
After several algebraic manipulations, one can show that \mathbf{W} is solution of a SD problem

$$
\left\{\begin{array}{c}
\mathbf{Q}_{1}=\mathbf{W} \cdot \mathbf{D}_{1} \cdot \mathbf{W}^{T} \\
\mathbf{Q}_{2}=\mathbf{W} \cdot \mathbf{D}_{2} \cdot \mathbf{W}^{T} \\
\vdots \\
\vdots \\
\mathbf{Q}_{\mathbf{R}}=\mathbf{W} \cdot \mathbf{D}_{R} \cdot \mathbf{W}^{T}
\end{array}\right.
$$

Reformulation of DCB-(2,2,1) in terms of SD

Technical details

Trilinear mapping ϕ_{2} for rank-2 detection:

$$
\begin{aligned}
& \phi_{2}:(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \in\left(C^{I \times J}, C^{I \times J}, C^{I \times J}\right) \rightarrow \phi_{2}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \in C^{I \times I \times I \times J \times J \times J} \\
& {\left[\phi_{2}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})\right]_{i_{1} i_{2} i_{3} j_{1} j_{2} j_{3}} }=\left|\begin{array}{lll}
x_{i_{1} j_{1}} & x_{i_{1} j_{2}} & x_{i_{1} j_{3}} \\
y_{i_{2} j_{1}} & y_{i_{2} j_{2}} & y_{i_{2} j_{3}} \\
z_{i_{3} j_{1}} & z_{i_{3} j_{2}} & z_{i_{3} j_{3}}
\end{array}\right|+\left|\begin{array}{lll}
x_{i_{1} j_{1}} & x_{i_{1} j_{2}} & x_{i_{1} j_{3}} \\
z_{i_{2} j_{1}} & z_{i_{2} j_{2}} & z_{i_{2} j_{3}} \\
y_{i_{3} j_{1}} & y_{i_{3} j_{2}} & y_{i_{3} j_{3}}
\end{array}\right|+\left|\begin{array}{lll}
y_{i_{1} j_{1}} & y_{i_{1} j_{2}} & y_{i_{1} j_{3}} \\
x_{i_{2} j_{1}} & x_{i_{2} j_{2}} & x_{i_{2} j_{3}} \\
z_{i_{3} j_{1}} & z_{i_{3} j_{2}} & z_{i_{3} j_{3}}
\end{array}\right| \\
&+\left|\begin{array}{lll}
y_{i_{1} j_{1}} & y_{i_{1} j_{2}} & y_{i_{1} j_{3}} \\
z_{i_{2} j_{1}} & z_{i_{2} j_{2}} & z_{i_{2} j_{3}} \\
x_{i_{3} j_{1}} & x_{i_{3} j_{2}} & x_{i_{3} j_{3}}
\end{array}\right|+\left|\begin{array}{lll}
z_{i_{1} j_{1}} & z_{i_{1} j_{2}} & z_{i_{1} j_{3}} \\
x_{i_{2} j_{1}} & x_{i_{2} j_{2}} & x_{i_{2} j_{3}} \\
y_{i_{3} j_{1}} & y_{i_{3} j_{2}} & y_{i_{3} j_{3}}
\end{array}\right|+\left|\begin{array}{lll}
z_{i_{1} j_{1}} & z_{i_{1} j_{2}} & z_{i_{1} j_{3}} \\
y_{i_{2} j_{1}} & y_{i_{2} j_{2}} & y_{i_{2} j_{3}} \\
x_{i_{3} j_{1}} & x_{i_{3} j_{2}} & x_{i_{3} j_{3}}
\end{array}\right|
\end{aligned}
$$

Then we have $\phi_{2}(\mathbf{X}, \mathbf{X}, \mathbf{X})=0$ iif \mathbf{X} is at most rank -2 .

Reformulation of DCB-(2,2,1) in terms of SD

Technical details

$$
\text { For } r=1 \ldots R \quad \text {, } \mathbf{E}_{r}=\mathbf{W}_{1 r}^{-1} \text {, }{\underset{\mathrm{J}}{\mathrm{~J}}}_{\mathbf{X}_{1}}+\cdots+\mathbf{W}_{R r}^{-1} \text { । } \mathbf{X}_{R}
$$

Build the set of R^{3} tensors $\mathscr{P}_{r s t}=\phi_{2}\left(\mathbf{E}_{r}, \mathbf{E}_{s}, \mathbf{E}_{t}\right) \quad \mathrm{r}=1, \ldots, \mathrm{R}, \mathrm{s}=1, \ldots, \mathrm{R}, \mathrm{t}=1, \ldots, \mathrm{R}$
Since ϕ_{2} is trilinear, we have : $\mathscr{P}_{r s t}=\sum_{u, v, w=1}^{R}\left(\mathbf{W}^{-1}\right)_{u r}\left(\mathbf{W}^{-1}\right)_{v s}\left(\mathbf{W}^{-1}\right)_{w t} \phi_{2}\left(\mathbf{X}_{u}, \mathbf{X}_{v}, \mathbf{X}_{w}\right)$
One can show that, if the $\left(C_{R+2}^{3}-R\right)$ tensors of the set Ω are linearly independent,

$$
\Omega=\left\{\phi_{2}\left(\mathbf{X}_{u}, \mathbf{X}_{v}, \mathbf{X}_{w}\right), 1 \leq u \leq v \leq w \leq R\right\}-\left\{\phi_{2}\left(\mathbf{X}_{u}, \mathbf{X}_{u}, \mathbf{X}_{u}\right), 1 \leq u \leq R\right\},
$$

then \mathbf{W} is solution of

$$
\mathcal{Q}=\mathfrak{D} \times_{1} \mathbf{W} \times_{2} \mathbf{W} \times{ }_{3} \mathbf{W}
$$

where \mathscr{D} is an arbitrary diagonal tensor and Q is a symmetric tensor satisfying

$$
\sum_{r, s, t}^{R} q_{r s t} \mathscr{P}_{r s t}=0
$$

Reformulation of DCB-($2,2,1$) in terms of SD:

A new uniqueness bound

\square Crucial assumption in the reformulation:
«The $\left(C_{R+2}^{3}-R\right)$ tensors of the set Ω are linearly independent»
\square One can show that this is generically true if

$$
R \leq \min (I J, K) \text { and } \mathrm{C}_{1}^{3} \cdot \mathrm{C}_{\mathrm{J}}^{3} \geq \mathrm{C}_{\mathrm{R}+2}^{3}-R
$$

$$
\mathrm{C}_{\mathrm{n}}^{\mathrm{k}}=\frac{n!}{k!(n-k)!}
$$

The generalization to any value of L yields that the DCB-(L,L,1) is unique if

```
R\leqmin( IJ,K) and C C1 L
```

\square To be compared to the old uniqueness bound

$$
L R \leq I J \text { and } \min \left(\left\lfloor\frac{I}{L}\right\rfloor, R\right)+\min \left(\left\lfloor\frac{J}{L}\right\rfloor, R\right)+\min (K, R) \geq 2(R+1)
$$

Reformulation of DCB-(2,2,1) in terms of SD

Uniqueness

Roadmap

I. Introduction

\rightarrow Tensor decompositions: PARAFAC, Tucker, Block-Component Decompositions
II. Block-Component Decomposition in Rank-(L,L,1) Terms
\rightarrow Definition of the BCD-(L,L,1), Uniqueness bound, ALS Algorithm
III. Reformulation of BCD-(L,L,1) in terms of simultaneous matrix diagonalization
\rightarrow New algorithm, relaxed uniqueness bound
IV. An application of the BCD-(L,L,1): blind source separation in telecommunications
V. Conclusion and Future Research

Data model: DS-CDMA system

Performance: comparison between

ALS and SD algorithms

Conclusion

\square Reformulation of PARAFAC in terms of Simultaneous Diagonalization (SD) yields a fast and accurate algorithm, with improved identifiability results [De Lathauwer, 2005].

The starting point for this reformulation is that one dimension is long enough: $R \leq \min (I J, K)$, where I, J and K can be interchanged.
\square The BCD-(L,L,1), which is a generalization of PARAFAC, can also be formulated in terms of SD, which also yield a fast and accurate algorithm and improved identifiability result.

The starting point for this reformulation is that the third dimension (K) is long enough $R \leq \min (I J, K) . \mathrm{I}, \mathrm{J}$ and K can not be interchanged
\square When the long dimension is I or J, i.e., $R \leq \min (J K, I)$ or $R \leq \min (I K, J)$
we have recently shown (CAMSAP 2009), that the BCD-(L,L,1) can be reformulated as Joint-Block-Diagonalization problem. This yields a new set of identifiability results.

