The Joint Block Diagonalization (JBD) problem: a tensor framework.

Dimitri Nion \& Lieven De Lathauwer
 K.U. Leuven, Kortrijk campus, Belgium
 E-mails: Dimitri.Nion@kuleuven-kortrijk.be
 Lieven.DeLathauwer@kuleuven-kortrijk.be

TDA 2010, Monopoli, Italy, September 13-17, 2010

Joint-Block-Diagonalization (JBD): model

$$
\mathbf{X}_{k}=\mathbf{A D}_{k} \mathbf{A}^{T}\left(+\mathbf{N}_{k}\right) \text { or } \mathbf{X}_{k}=\mathbf{A D}_{k} \mathbf{A}^{H}\left(+\mathbf{N}_{k}\right), k=1, \ldots, K
$$

JBD is a generalization of JD (Joint Diagonalization)/INDSCAL

$$
\mathbf{D}_{K}
$$

JBD : ambiguities

Observation: if you choose \mathbf{Z} arbitrary, you lose the JBD structure.
Question: what is the structure of \mathbf{Z} such that the JBD model is still valid?

JBD : essential uniqueness

The JBD of $\left\{\mathbf{X}_{k}\right\}_{k=1}^{K}$ is said essentially unique if $\mathbf{Z}=\mathbf{\Lambda} \boldsymbol{\Pi}$
> $\boldsymbol{\Lambda}$ an arbitrary block-diagonal matrix,
> Π an arbitrary block-wise permutation matrix.

Solving a JBD problem
\Leftrightarrow Estimation of $\left\{\operatorname{Span}\left(\mathbf{A}_{r}\right)\right\}_{r=1, \ldots, R}$ in an arbitrary order

JBD: State of the art

JBD is becoming popular signal processing tool in applications such as:
$>$ Blind Source Separation (BSS) of convolutive mixtures in the time-domain,
$>$ Independent Subspace Analysis.
Two approaches in the literature:
> Approach 1: Unitary-JBD [Abed Meraim and Belouchrani, 2004]
" \mathbf{A} is a square unitary matrix » ($\mathbf{A}^{\top} \mathbf{A}=\mathbf{I}$)
> Approach 2: Non-Unitary JBD

- Approach 2.1: [H. Ghennioui, N. Thirion-Moreau, E. Moreau, 2008, 2010]
" \mathbf{A} is tall and full column-rank. "
\rightarrow Indeed, their approach only works if \mathbf{A} is a square non-unitary matrix.
- Approach 2.2: This talk
"A can be a tall, square or fat non-unitary matrix "
\rightarrow JBD is a particular instance of Block-Component-Decompositions
\rightarrow Computation by a gradient-based algorithm
\rightarrow In the square case, better performance than 2.1

Joint-Block-Diagonalization : state of the art (1)

- Approach 1: Unitary-JBD [Abed Meraim and Belouchrani, 2004]
$\Rightarrow \mathbf{A}$ is square unitary matrix $\left(\mathbf{A}^{\top} \mathbf{A}=\mathbf{I}\right)$

$$
X_{k}=A D_{k} A^{\top}\left(+N_{k}\right) \Longleftrightarrow A^{\top} X_{k} A=D_{k}+\left(A N_{k} A^{\top}\right)
$$

$$
\max _{\mathbf{A}} \sum_{k=1}^{K}\left\|b \operatorname{diag}\left(\mathbf{A}^{T} \mathbf{X}_{k} \mathbf{A}\right)\right\|_{F}^{2} \quad \text { or } \min _{\mathbf{A}} \sum_{k=1}^{K}\left\|\operatorname{offb} \operatorname{diag}\left(\mathbf{A}^{T} \mathbf{X}_{k} \mathbf{A}\right)\right\|_{F}^{2}
$$

Joint-Block-Diagonalization : state of the art (2)

- Approach 2: Non-Unitary-JBD [H. Ghennioui, N. Thirion-Moreau, E. Moreau, 2008, 2010] > \mathbf{A} is tall and full column-rank (Let $\mathbf{B}=\mathbf{A}^{\dagger}$, then $\mathbf{B A}=\mathbf{I}$)

$$
X_{k}=A D_{k} A^{\top}\left(+N_{k}\right) \quad \Longleftrightarrow B X_{k} B^{\top}=D_{k}+\left(B N_{k} B^{\top}\right)
$$

$$
\max _{\mathbf{B}} \sum_{k=1}^{K}\left\|b \operatorname{diag}\left(\mathbf{B} \mathbf{X}_{k} \mathbf{B}^{T}\right)\right\|_{F}^{2} \quad \text { or } \min _{\mathbf{B}} \sum_{k=1}^{K} \| \operatorname{offb\operatorname {diag}(\mathbf {B}\mathbf {X}_{k}\mathbf {B}^{T})\| _{F}^{2},~}
$$

Joint-Block-Diagonalization : state of the art (3)

- Approach 2: Non-Unitary-JBD [H. Ghennioui, N. Thirion-Moreau, E. Moreau, 2008, 2010]
>2 gradient-descent based algorithms, $\mathrm{JBD}_{\mathrm{OG}}$ and $\mathrm{JBD}_{\mathrm{ORG}}$ to solve

$$
\begin{equation*}
\min _{\mathbf{B}} \phi_{\mathrm{off}}=\sum_{k=1}^{K} \| \text { offbdiag }\left(\mathbf{B} \mathbf{X}_{k} \mathbf{B}^{T}\right) \|_{F}^{2} \tag{1}
\end{equation*}
$$

- Drawbacks of approach 2:
$>B=0$ is a trivial minimizer
$>$ Under-determined case $(\mathbf{A}$ fat, $\mathrm{l}<\mathrm{N})$ not handled, since it is assumed that $\mathbf{B A}=\mathbf{I}$
$>$ Indeed, the over-determined case (\mathbf{A} tall, $\mathrm{l}>\mathrm{N}$) is not successfully handled either because if $\mathbf{B}=\left[\mathbf{B}_{1}^{T}, \mathbf{B}_{2}^{T}\right]^{T}=\mathbf{A}^{\dagger}$ is solution of an exact JBD problem, i.e., offbdiag $\left(\mathbf{B X}_{k} \mathbf{B}^{T}\right)=\operatorname{offbdiag}\left(\mathbf{B A D}_{k} \mathbf{A}^{T} \mathbf{B}^{T}\right)=\operatorname{offbdiag}\left(\mathbf{D}_{k}\right)=0, \forall k$ then $\mathbf{B}=\left[\left(\mathbf{A}^{\perp}\right)^{T}, \mathbf{B}_{2}^{T}\right]^{T} \quad$ is also solution of (1) but not solution of the JBD problem because

$$
\tilde{\mathbf{B}} \mathbf{A}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
X & X
\end{array}\right] \text { is not full rank. Idem for } \tilde{\mathbf{B}}=\left[\mathbf{B}_{1}^{T}+\left(\mathbf{A}^{\perp}\right)^{T}, \mathbf{B}_{2}^{T}\right]_{8}^{T}
$$

Joint-Block-Diagonalization : our contributions

- Starting point: the gradient-descent based algorithms $\mathrm{JBD}_{\mathrm{OG}}$ and $\mathrm{JBD}_{\mathrm{ORG}}$ of [H. Ghennioui, N. Thirion-Moreau, E. Moreau, 2008, 2010] for Non-Unitary JBD can only handle the case where \mathbf{A} is square $(\mathrm{l}=\mathrm{N})$.
- Main motivation: Propose a novel technique to solve non-unitary JBD problems that can handle exactly-, over- and under- determined cases (i.e., A may be square, tall or fat).

- Main contributions:

> Formulate JBD as a tensor decomposition fitting problem;
> Build a Conjugate Gradient (CG) algorithm to compute the tensor decomposition;
$>$ In the over-determined case, build a good starting point for any JBD algorithm;
> Application: blind source separation via Independent Subspace Analysis (ISA).

JBD in tensor format : link to BCD

$\mathfrak{X}=\sum_{r=1}^{R} \mathscr{D}_{r} \bullet_{1} \mathbf{A}_{r} \bullet_{2} \mathbf{A}_{r}$
(or $\mathscr{X}=\sum_{r=1}^{R} \mathscr{D}_{r} \bullet_{1} \mathbf{A}_{r} \bullet_{2} \mathbf{A}_{r}^{*} \quad \begin{aligned} & \left.\text { JBD } \Longleftrightarrow \text { particular case of BCD-(} \mathrm{L}_{r}, \mathrm{M}_{r}, .\right),\left(\begin{array}{l}(« \text { Block- } \\ \left.\text { Component-Decomposition in rank-(} \mathrm{L}_{r}, \mathrm{M}_{r}, .\right)\end{array} \text { terms ») }\right.\end{aligned}$
in case of hermitian symmetry)

JBD in tensor format : conditions for essential uniqueness

$>\operatorname{BCD}-\left(\mathrm{L}_{\mathrm{r}}, \mathrm{M}_{\mathrm{r}},.\right): \quad \mathfrak{X}=\sum_{r=1}^{R} \mathscr{D}_{r} \bullet_{1} \mathbf{A}_{r} \bullet_{2} \mathbf{B}_{r} \quad \begin{array}{r}\text { where } \mathbf{A}=\left[\mathbf{A}_{1}, \ldots, \mathbf{A}_{\mathrm{R}}\right] \text { is } \mathrm{I} \text { by } \mathrm{N} \\ \mathbf{B}=\left[\mathbf{B}_{1}, \ldots, \mathbf{B}_{\mathrm{R}}\right] \text { is } \mathrm{J} \text { by } \mathrm{Q}\end{array}$
> Theorem [De Lathauwer, 2008]: Suppose that $\operatorname{rank}(\mathbf{A})=\mathrm{N}, \operatorname{rank}(\mathbf{B})=\mathrm{Q}, \mathrm{K}>2$ and that the tensors $\left\{\mathscr{D}_{r}\right\}_{r=1, \ldots, R}$ are generic, then the BCD-(L_{r}, M_{r},.) of \mathfrak{X} is essentially unique (Sufficient condition).
$>$ JBD : $\mathfrak{X}=\sum_{r=1}^{R} \mathfrak{D}_{r} \bullet_{1} \mathbf{A}_{r} \bullet_{2} \mathbf{A}_{r} \quad$ where $\quad \mathbf{A}=\left[\mathbf{A}_{1}, \ldots, \mathbf{A}_{R}\right]$ is I by N
> The same theorem can be invoked (the proof still holds with \mathbf{A} instead of \mathbf{B})
$>$ In summary, it means that JBD is generically unique if

$$
K>2 \text { and } \operatorname{rank}(\mathbf{A})=\mathrm{N}
$$

> This is only a sufficient condition: uniqueness still holds but is harder to prove in several cases where the condition is not satisfied.
> For instance, uniqueness may still hold when $\operatorname{rank}(\mathbf{A})=1(\mathbf{A}$ fat, $\mathrm{l<N})$

JBD in tensor format : cost function

$$
\begin{array}{rlrl}
\min _{\left\{\mathfrak{D}_{r}\right\}_{r=1}^{R}, \mathbf{A}} \phi_{L S} & =\|\mathfrak{O}\|_{F}^{2} & \text { with } \mathfrak{O}=\mathfrak{X}-\sum_{r=1}^{R} \mathfrak{D}_{r} \bullet_{1} \mathbf{A}_{r} \bullet_{2} \mathbf{A}_{r} \\
& =\sum_{k=1}^{K}\left\|\mathbf{N}_{k}\right\|_{F}^{2} & \text { with } \mathbf{N}_{k}=\mathbf{X}_{k}-\sum_{r=1}^{R} \mathbf{A}_{r} \mathbf{D}_{k r} \mathbf{A}_{r}^{T} \\
& =\|\mathbf{N}\|_{F}^{2} & & \text { with } \mathbf{N}=\mathbf{X}-(\mathbf{A} \odot \mathbf{A}) \mathbf{D}
\end{array}
$$

Where:
$\square \mathbf{A} \odot \mathbf{A}=\left[\mathbf{A}_{1} \otimes \mathbf{A}_{1}, \ldots, \mathbf{A}_{\mathrm{R}} \otimes \mathbf{A}_{\mathrm{R}}\right]$ is the Khatri-Rao product (block-wise Kronecker product)
$\square \mathbf{X}$ and \mathbf{N} are the $\mathrm{I}^{2} \mathrm{xK}$ matrix unfoldings of the IxlxK tensors \mathfrak{X} and \mathfrak{T}, resp.

JBD in tensor format : derivation of the gradient

$$
\mathbf{X}_{k}=\mathbf{A D}_{k} \mathbf{A}^{T}+\mathbf{N}_{k} \quad\left\{\begin{array}{l}
\nabla_{\mathbf{A}}\left(\phi_{L S}\right)=-2 \sum_{k=1}^{K}\left(\mathbf{N}_{k}^{T} \mathbf{A} \mathbf{D}_{k}+\mathbf{N}_{k} \mathbf{A} \mathbf{D}_{k}^{T}\right), \\
\nabla_{\mathbf{D}}\left(\phi_{L S}\right)=-2\left(\mathbf{A} \odot \mathbf{A}^{T}\right) \mathbf{N}
\end{array}\right.
$$

Complex-valued data, standard symmetry

$$
\mathbf{X}_{k}=\mathbf{A} \mathbf{D}_{k} \mathbf{A}^{T}+\mathbf{N}_{k}
$$

$$
\left\{\begin{array}{l}
\nabla_{\mathbf{A}^{*}}\left(\phi_{L S}\right)=-\sum_{k=1}^{K}\left(\mathbf{N}_{k}^{T} \mathbf{A}^{*} \mathbf{D}_{k}^{*}+\mathbf{N}_{k} \mathbf{A}^{*} \mathbf{D}_{k}^{H}\right), \\
\nabla_{\mathbf{D}^{*}}\left(\phi_{L S}\right)=-(\mathbf{A} \odot \mathbf{A})^{H} \mathbf{N}
\end{array}\right.
$$

Complex-valued data, hermitian symmetry

$$
\mathbf{X}_{k}=\mathbf{A} \mathbf{D}_{k} \mathbf{A}^{H}+\mathbf{N}_{k}
$$

$$
\left\{\begin{array}{l}
\nabla_{\mathbf{A}^{*}}\left(\phi_{L S}\right)=-\sum_{k=1}^{K}\left(\mathbf{N}_{k}^{H} \mathbf{A} \mathbf{D}_{k}+\mathbf{N}_{k} \mathbf{A} \mathbf{D}_{k}^{H}\right) \\
\nabla_{\mathbf{D}^{*}}\left(\phi_{L S}\right)=-\left(\mathbf{A} \odot \mathbf{A}^{*}\right)^{T} \mathbf{N}
\end{array}\right.
$$

Conjugate Gradient algorithm for JBD: JBD-CG

while (stop criterionnot satisfied)
1-Compute $\nabla_{\mathbf{A}}$ and $\nabla_{\mathbf{D}}$ from \mathbf{D} and \mathbf{A}
2- Update search directions
2.1-Compute β (e.g. with stabilized Polak - Ribière formula)
2.2-New search directions :

$$
\begin{aligned}
& \mathbf{d}_{\mathbf{A}} \leftarrow-\nabla_{\mathbf{A}}+\beta \mathbf{d}_{\mathbf{A}} \\
& \mathbf{d}_{\mathbf{D}} \leftarrow-\nabla_{\mathbf{D}}+\beta \mathbf{d}_{\mathbf{D}}
\end{aligned}
$$

3 - Joint Exact Line Search:

$$
\left(\alpha_{\mathbf{A}}, \alpha_{\mathbf{D}}\right) \leftarrow \underset{\alpha_{A}, \alpha_{\mathbf{D}}}{\arg \min } \phi_{L S}\left(\mathbf{A}+\alpha_{\mathbf{A}} \mathbf{d}_{\mathbf{A}}, \mathbf{D}+\alpha_{\mathbf{D}} \mathbf{d}_{\mathbf{D}}\right)
$$

4-Update unknwons:

$$
\begin{aligned}
& \mathbf{A} \leftarrow \mathbf{A}+\alpha_{\mathbf{A}} \mathbf{d}_{\mathbf{A}} \\
& \mathbf{D} \leftarrow \mathbf{D}+\alpha_{\mathbf{D}} \mathbf{d}_{\mathbf{D}}
\end{aligned}
$$

End

Step 3 of JBD-CG : Joint Exact Line Search

$$
\min _{\alpha_{\mathbf{A}}, \alpha_{\mathbf{D}}} \phi_{L S}\left(\mathbf{A}+\alpha_{\mathbf{A}} \mathbf{d}_{\mathbf{A}}, \mathbf{D}+\alpha_{\mathbf{D}} \mathbf{d}_{\mathbf{D}}\right)
$$

$\phi_{L S}\left(\mathbf{A}+\alpha_{\mathbf{A}} \mathbf{d}_{\mathbf{A}}, \mathbf{D}+\alpha_{\mathbf{D}} \mathbf{d}_{\mathbf{D}}\right)=\left\|\left[\left(\mathbf{A}+\alpha_{\mathbf{A}} \mathbf{d}_{\mathbf{A}}\right) \odot\left(\mathbf{A}+\alpha_{\mathbf{A}} \mathbf{d}_{\mathbf{A}}\right)\right]\left(\mathbf{D}+\alpha_{\mathbf{D}} \mathbf{d}_{\mathbf{D}}\right)-\mathbf{X}\right\|_{F}^{2}$

$$
\begin{equation*}
=\alpha_{\mathbf{D}}^{2} Q_{2}\left(\alpha_{\mathbf{A}}\right)+2 \alpha_{\mathbf{D}} Q_{1}\left(\alpha_{\mathbf{A}}\right)+Q_{0}\left(\alpha_{\mathbf{A}}\right) \tag{1}
\end{equation*}
$$

\rightarrow Solve $\frac{\partial \phi_{L S}\left(\alpha_{\mathbf{A}}, \alpha_{\mathbf{D}}\right)}{\partial \alpha_{\mathbf{D}}}=0$

\rightarrow Substitute (2) in (1): $\quad \phi_{L S}\left(\alpha_{\mathrm{A}}\right)=\frac{-Q_{1}^{2}\left(\alpha_{\mathrm{A}}\right)+Q_{0}\left(\alpha_{\mathrm{A}}\right) Q_{2}\left(\alpha_{\mathrm{A}}\right)}{Q_{2}\left(\alpha_{\mathrm{A}}\right)}$
\rightarrow Minimize (3) w.r.t. $\quad \alpha_{\mathrm{A}} \quad$ (degree 7 polynomial rooting)
\rightarrow Given $\alpha_{\mathrm{A}}, \alpha_{\mathrm{D}}$ is given by (2)

JBD in tensor format : a closed form solution (when A is full column-rank)

$>$ Idea: when A is square or tall (full column-rank), the exact (noise-free) JBD problem can be solved by eigenvalue analysis. In presence of noise, this solution can be used to initialize iterative algorithms.
$>$ Derivation in the square case $(\mathrm{I}=\mathrm{N})$: Take two matrices

$$
\left\{\begin{array}{l}
\mathbf{X}_{1}=\mathbf{A D}_{1} \mathbf{A}^{T} \\
\mathbf{X}_{2}=\mathbf{A D}_{2} \mathbf{A}^{T}
\end{array}\right\}
$$

$>$ We have $\mathbf{X}_{12}=\mathbf{X}_{11} \mathbf{X}_{2}^{-1}=\mathbf{A D}_{12} \mathbf{A}^{-1}$ where \mathbf{D}_{12} is block-diagonal.
$>$ So $\mathbf{X}_{12} \mathbf{A}_{r}=\mathbf{A}_{r}\left[\mathbf{D}_{12}\right]_{r r}$, i.e., $\operatorname{Span}\left(\mathbf{A}_{r}\right), \forall r$, is aninvariant subspace of \mathbf{X}_{12}.
$>E V D: \mathbf{X}_{12}=\mathbf{E} \Lambda \mathbf{E}^{-1}$, where Λ is diagonal.
> We have $\mathbf{A}=\mathbf{E} \boldsymbol{\Pi}$, where $\boldsymbol{\Pi}$ is a permutation matrix that groups the eigenvectors L_{r} by L_{r}.
> Find Π by checking the permuted block-diagonal structure of the matrices $\quad \mathbf{E}^{-1} \mathbf{X}_{k} \mathbf{E}^{-T}=\boldsymbol{\Pi} \mathbf{D}_{k} \boldsymbol{\Pi}^{T}, k=1, \ldots, K$

Performance index

$>$ We have : $\hat{\mathbf{A}}=\mathbf{A} \boldsymbol{\Lambda} \boldsymbol{\Pi}+\mathbf{N}$ where

- $\boldsymbol{\Lambda}$ is an unknown block-diagonal matrix,
- $\boldsymbol{\Pi}$ is an unknown block-wise permutation matrix,
- \mathbf{N} is the estimation error.
$>$ Compute $\boldsymbol{\Pi}$ and $\boldsymbol{\Lambda}$ such that $\mathbf{A} \boldsymbol{\Lambda} \boldsymbol{\Pi}$ matches $\hat{\mathbf{A}}$ in the least squares sense.
> Compute the relative error:

$$
\varepsilon_{\mathrm{rel}}=\frac{\|\hat{\mathbf{A}}-\mathbf{A} \mathbf{\Lambda} \boldsymbol{\Pi}\|_{F}}{\|\mathbf{A}\|_{F}}
$$

Numerical experiments (1)

Exactly determined case: $\quad \mathrm{I}=\mathrm{N}=6, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{3}=2, \quad \mathrm{R}=3, \mathrm{~K}=30$

Comparison of our JBD-CG technique with JBD-OG of Moreau, 2008, 2010]

Numerical experiments (2)

Under determined case: $\mathrm{I}=6, \mathrm{~N}=8, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{3}=\mathrm{L}_{4}=2, \mathrm{R}=4, \mathrm{~K}=100$

Application: Blind Subspace Separation

Blind Subspace Separation via Second-OrderStatistics (SOS)

> $\mathbf{y}[p]=\mathbf{A x}[p]$
> Covariance matrix:

$$
\mathbf{R}_{\mathbf{y y}}[\tau]=E\left\{\mathbf{y}[p] \mathbf{y}^{H}[p+\tau]\right\}=\mathbf{A} E\left\{\mathbf{x}[p] \mathbf{x}^{H}[p+\tau]\right\} \mathbf{A}^{H}=\mathbf{A D A}^{H}
$$

where \mathbf{D} is block diagonal because on assumptions on secondary sources.
> Set of K covariance matrices:

$$
\left\{\begin{array}{c}
\mathbf{R}_{\mathrm{yy}}\left[\tau_{1}\right]=\mathbf{A} \mathbf{D}_{1} \mathbf{A}^{H} \\
\vdots \\
\mathbf{R}_{\mathrm{yy}}\left[\tau_{K}\right]=\mathbf{A} \mathbf{D}_{K} \mathbf{A}^{H}
\end{array}\right\} \xrightarrow{\square} \text { JBD problem ! }
$$

> Estimate \mathbf{A} by JBD-ACG algorithm
$>$ In the (over)-determined case (A square or tall), LS estimate of secondary sources:

$$
\mathbf{x}[p]=\mathbf{A}^{-1} \mathbf{y}[p]
$$

> Blind SIMO identification stage to recover primary sources from secondary ones,
see, e.g., E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrargue, "Subspace Methods for the Blind Identification of Multichannel FIR filters," IEEE Trans. Signal Proc., vol. 43, pp. 516-525, 1995.

Practical example: separation of speech signals

$>\mathrm{R}=3$ primary sources.
$>$ Number of filters for each source: $L_{1}=L_{2}=L_{3}=4$; each filter of length 50 generated randomly $\rightarrow \mathrm{N}=12$ secondary sources.
$>M=14$ sensors (\mathbf{A} is 14 by 12).
$>\mathrm{K}=21$ covariance matrices.

S_{1}

s_{2}

$\mathbf{s}_{3} 9$

Practical example: separation of speech signals

$\sum_{k=1}^{n} \mathbf{R}_{\|}\left|z_{i}\right|=\sum_{l=1}^{n} \mathbf{D}_{d} \mid$
$\mathbf{A}^{-1} \hat{\mathbf{A}}$

Practical example: separation of speech signals

\sum Separation is successful

Conclusion

$>$ JBD is a generalization of JD
$>$ JD \Longleftrightarrow a particular case of Candecomp/Parafac
JBD \Longleftrightarrow a particular case of Block-Component-Decomposition (BCD)
$>$ Uniqueness conditions for BCD can be invoked.
$>$ In the exactly- and over- determined cases, we proposed an EVD-based technique useful for good initialization of JBD algorithms.
> We proposed a JBD-CG algorithm that works in exactly-, over- and underdetermined cases
> Application: CG can accuratly achieve blind subspace separation based on Second Order Statistics.

