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Joint-Block-Diagonalization (JBD): model
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JBD is a generalization of JD (Joint Diagonalization)/INDSCAL
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JBD : ambiguities

Observation: if you choose Z arbitrary, you lose the JBD structure.

Question: what is the structure of  Z such that the JBD model is still valid?
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JBD : essential uniqueness

Solving a JBD problem               

Estimation of {Span(Ar)}r=1,…,R   in an arbitrary order

The JBD of is said essentially unique if

 an arbitrary block-diagonal matrix, 

 an arbitrary block-wise permutation matrix.
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JBD: State of the art

JBD is becoming popular signal processing tool in applications such as:

 Blind Source Separation (BSS) of convolutive mixtures in the time-domain,

 Independent Subspace Analysis. 

Two approaches in the literature: 

 Approach 1: Unitary-JBD [Abed Meraim and Belouchrani, 2004]

« A is a square unitary matrix » (AT A = I )

 Approach 2: Non-Unitary JBD

 Approach 2.1: [H. Ghennioui, N. Thirion-Moreau, E. Moreau, 2008, 2010]

« A is tall and full column-rank. »

 Indeed, their approach only works if A is a square non-unitary matrix.

 Approach 2.2: This talk

« A can be a tall, square or fat non-unitary matrix »

 JBD is a particular instance of Block-Component-Decompositions

 Computation by a gradient-based algorithm

 In the square case, better performance than 2.1
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Joint-Block-Diagonalization : state of the art (1)

 Approach 1: Unitary-JBD [Abed Meraim and Belouchrani, 2004]

 A is square unitary matrix (ATA = I )
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Joint-Block-Diagonalization : state of the art (2)

 Approach 2: Non-Unitary-JBD [H. Ghennioui, N. Thirion-Moreau, E. Moreau, 2008, 2010]

 A is tall and full column-rank (Let B = A , then  BA = I )
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Joint-Block-Diagonalization : state of the art (3)

 Approach 2: Non-Unitary-JBD [H. Ghennioui, N. Thirion-Moreau, E. Moreau, 2008, 2010]

 2 gradient-descent based algorithms, JBDOG and JBDORG to solve
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 Drawbacks of approach 2:

 B=0 is a trivial minimizer

 Under-determined case (A fat, I<N) not handled, since it is assumed that BA=I

 Indeed, the over-determined case (A tall, I>N) is not successfully handled either 

because if  is solution of an exact JBD problem, i.e., 

then is also solution of (1) but not solution of the JBD problem 
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Joint-Block-Diagonalization : our contributions

 Starting point: the gradient-descent based algorithms JBDOG and JBDORG of      

[H. Ghennioui, N. Thirion-Moreau, E. Moreau, 2008, 2010] for Non-Unitary JBD can only

handle the case where A is square (I=N).

 Main motivation: Propose a novel technique to solve non-unitary JBD problems 

that can handle exactly-, over- and under- determined cases (i.e., A may be square, 

tall or fat).

 Main contributions:

 Formulate JBD as a tensor decomposition fitting problem;

 Build a Conjugate Gradient (CG) algorithm to compute the tensor decomposition;

 In the over-determined case, build a good starting point for any JBD algorithm;

 Application: blind source separation via Independent Subspace Analysis (ISA).
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JBD in tensor format : link to BCD
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DX(or

in case of hermitian symmetry)

JD particular case of candecomp-parafac

JBD            particular case of BCD-(Lr, Mr, .), (« Block-

Component-Decomposition in rank-(Lr, Mr, .) terms ») 
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 BCD-(Lr , Mr , .) : where A=[A1,…,AR] is I by N

B=[B1,…,BR] is J by Q

 Theorem [De Lathauwer, 2008]: Suppose that rank(A)=N, rank(B)=Q, K>2 and that 

the tensors {Dr}r=1,…,R are generic, then the BCD-(Lr , Mr , .) of X is essentially unique 

(Sufficient condition).

JBD in tensor format : conditions for essential 

uniqueness
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 JBD : where A=[A1,…,AR] is I by Nrr
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 The same theorem can be invoked (the proof still holds with A instead of B)

 In summary, it means that JBD is generically unique if

K>2    and   rank(A)=N

 This is only a sufficient condition: uniqueness still holds but is harder to prove  

in several cases where the condition is not satisfied.

 For instance, uniqueness may still hold when rank(A)=I (A fat, I<N)
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JBD in tensor format : cost function
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Where:

 A      A = [A1         A1 , …, AR AR]   is the Khatri-Rao product (block-wise 

Kronecker product)

 X and N are the I2xK matrix unfoldings of the IxIxK tensors X and N, resp.

. X X
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JBD in tensor format : derivation of the gradient

k

T

kk NAADX 

Real-valued data

Complex-valued data, 

standard symmetry

Complex-valued data, 

hermitian symmetry

k

T

kk NAADX 

k

H

kk NAADX 

NAA

ADNADN

D

A

)(2)(

,)(2)(
1

T

LS

K

k

T

kkk

T

kLS



 






.

NAA

DANDAN

D

A

H

LS

K

k

H

kkk

T

kLS

)()(

,)()(

*

*

1

***



 






.

NAA

ADNADN

D

A

T

LS

K

k

H

kkk

H

kLS

)()(

,)()(

*

1

*

*



 






.



14

Conjugate Gradient algorithm for JBD: JBD-CG
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Step 3 of JBD-CG : Joint Exact Line Search

),(min
,

DDAA dDdA
DA




LS

.

 Solve 0
),(






D

DA



LS

 

)1()()(2)(

)()()(),(

012

2

2

AADAD

DDAAAADDAA XdDdAdAdDdA





QQQ

FLS





)2(
)(

)(

2

1

A

A
D






Q

Q


 Substitute (2) in (1): )3(
)(

)()()(
)(

2

20

2

1

A

AAA
A






Q

QQQ
LS




 Minimize (3) w.r.t.            (degree 7 polynomial rooting)

 Given          ,        is given by (2)

A

A D



16

JBD in tensor format : a closed form solution 

(when A is full column-rank)
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 Idea: when A is square or tall (full column-rank), the exact (noise-free) JBD 

problem can be solved by eigenvalue analysis. In presence of noise, this solution 

can be used to initialize iterative algorithms.

 Derivation in the square case (I=N): Take two matrices
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Performance index

We have : where

 is an unknown block-diagonal matrix,

 is an unknown block-wise permutation matrix,

 is the estimation error.

 Compute and such that   matches in the least 

squares sense.

 Compute the relative error:
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Numerical experiments (1)

Exactly determined case: I=N=6, L1=L2=L3=2,  R=3,  K=30

Comparison of our JBD-CG technique with JBD-OG  of      [H. Ghennioui, N. Thirion-Moreau, E. 

Moreau, 2008, 2010]
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Numerical experiments (2)

Under determined case: I=6,  N=8, L1=L2=L3=L4=2,  R=4,  K=100
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Application: Blind Subspace Separation
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 Covariance matrix:

where D is block diagonal because on assumptions on secondary sources.

 Set of K covariance matrices:

 Estimate A by JBD-ACG algorithm

 In the (over)-determined case (A square or tall), LS estimate of secondary sources: 

 Blind SIMO identification stage to recover primary sources from secondary ones,

see, e.g., E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrargue, “Subspace Methods for the Blind 

Identification of Multichannel FIR filters,” IEEE Trans. Signal Proc., vol. 43, pp. 516–525, 1995.
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Practical example: separation of speech signals

 R=3 primary sources. 

 Number of filters for each source: L1=L2=L3=4; each filter of length 50 

generated randomly  N=12 secondary sources.

 M=14 sensors (A is 14 by 12). 

 K=21 covariance matrices.

s1 S2 s3
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Practical example: separation of speech signals
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Practical example: separation of speech signals

1̂s 2ŝ 3ŝ

Separation is successful
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Conclusion

 JBD is a generalization of JD

 JD a particular case of Candecomp/Parafac

JBD a particular case of Block-Component-Decomposition (BCD)

 Uniqueness conditions for BCD can be invoked.

 In the exactly- and over- determined cases, we proposed an EVD-based 

technique useful for good initialization of JBD algorithms.

 We proposed a JBD-CG algorithm that works in exactly-,  over- and under-

determined cases

 Application: CG can accuratly achieve blind subspace separation based on 

Second Order Statistics.


