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Introduction

Tensor Decompositions = Powerful multi-linear algebra tools that 
generalize matrix decompositions.

Motivation: increasing number of applications involving 
manipulation of multi-way data, rather than 2-way data.

Key research axes:
� Development of new models/decompositions
� Development of algorithms to compute decompositions
� Uniqueness of tensor decompositions
� Use these tools in new applications, or existing applications 

where the multi-way nature of data was ignored until now
� Tensor decompositions under constraints (e.g. imposing 

non-negativity or specific algebraic structures)
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From matrix SVD to tensor HOSVD
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Tensor HOSVD (third-order case)
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� One unitary matrix (UUUU, VVVV, WWWW) per mode 

� H H H H is the representation of YYYY in the reduced spaces.

� We may have 

� HHHH is not not not not diagonal (difference with matrix SVD).
L M N≠ ≠

Matrix SVD



From matrix SVD to PARAFAC
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From PARAFAC/HOSVD to Block Components 
Decompositions (BCD) [De Lathauwer and Nion]
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Content of this talk
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BCD - (L r,Lr,1) 

� Model ambiguities

� Algorithms

� Uniqueness

� Estimation of the parameters Lr (r = 1,…,R) and R

� An application in telecommunications



BCD - (Lr ,Lr ,1) : Model ambiguities

� Unknown matrices: 
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� BCD-(Lr,Lr,1) is said essentially unique if the only ambiguities are:

Arbitrary permutation of the R blocks in AAAA and B B B B and of the R columns of CCCC

+ Each block of AAAA and B B B B post----multiplied by arbitrary non-singular matrix, each 
column of CCCC arbitrarily scaled.

=  A =  A =  A =  A and B B B B estimated up to multiplication by a blockblockblockblock----wisewisewisewise permuted block-
diagonal matrix and CCCC by a permuted diagonal matrix.
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� Usual approach:  estimate A, B and C by minimization of
2
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BCD - (Lr ,Lr ,1) : Algorithms
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Exploit algebraic structure of matrix unfoldings

The model is fitted for a given choice of the parameters  {Lr , R}
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Z1, Z2 and Z3 are built from 2 matrices only and have a block-wise Khatri-
Rao product structure.
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BCD - (Lr ,Lr ,1) : ALS Algorithm
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ALS algorithm: problem of swampsALS algorithm: problem of swampsALS algorithm: problem of swampsALS algorithm: problem of swamps

Long swamp

Long Swamps typically occur when:

� The loading matrices of the decomposition (i.e. the  objective matrices) are 
ill-conditioned

� The updated matrices become ill-conditionned (impac t of initialization)

� One of the R tensor-components in Y = YY = YY = YY = Y1 1 1 1 + … + Y+ … + Y+ … + Y+ … + YR has a much higher 
norm than the R-1 others (e.g. « near-far » effect in  telecommunications)

27000 iterations !

Observation:

ALS is fast in many problems, 
but sometimes, a long swamp 
is encountered before 
convergence.
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Improvement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line Search

Principle: for each iteration, interpolate AAAA, BBBB and CCCC from their estimates of
2 previous iterations and use the interpolated matrices in input of ALS

1.Line Search:

2.Then ALS update 

Choice of     crucial

=1 annihilates LS step    
(i.e. we get standard ALS)

)(

)(

)(

)2()1()2()(

)2()1()2()(

)2()1()2()(

−−−

−−−

−−−

−+=

−+=
−+=

kkknew

kkknew

kkknew

AAAA

BBBB

CCCC

ρ
ρ
ρ

ρ

Search directions

ρ

[ ]
[ ]
[ ]

1

)3()ˆ,ˆ(ˆ

)2()ˆ,ˆ(ˆ

)1()ˆ,ˆ(ˆ

)()()(

)()()(

)()()(

+←
⋅=

⋅=

⋅=

×

×

×

kk

kkk

knewk

newnewk

BCZYA

CAZYB

ABZYC

KJI

IKJ

JIK

3

2

1

Purpose: reduce the length of swamps



12

[Harshman, 1970] « LSH » 25.1=ρ Choose

[Rajih, Comon, 2005] « Enhanced Line Search (ELS) »
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«Enhanced Line Search with Complex Step (ELSCS) »
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Improvement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line Search
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Improvement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line Search
«easy» problem «difficult» problem

� ELS � Large reduction of the number of iterations at a very low additional 
complexity w.r.t. standard ALS  

27000 iterations2000 iterations
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Improvement 2 of ALS: Dimensionality reductionImprovement 2 of ALS: Dimensionality reductionImprovement 2 of ALS: Dimensionality reductionImprovement 2 of ALS: Dimensionality reduction
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STEP 1:

HOSVD of Y
STEP 2:

BCD of the small core tensor H H H H 
(compressed space)

STEP 3:

Come back to original space

+ a few refinement iterations in 
original space

� Compression � Large reduction of the cost per iteration since the model is 
fitted in compressed space.
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Improvement 3 of ALS: Good initializationImprovement 3 of ALS: Good initializationImprovement 3 of ALS: Good initializationImprovement 3 of ALS: Good initialization

Comparison ALS and ALS+ELS, with three random initializations

Instead of using random initializations, could we u se the observed tensor itself ?

YES For the BCD-(L,L,1), if A and B are full column ran k (so I and J have to be 
long enough), there is an easy way to find a good i ntialization, in same spirit as 
Direct Trilinear Decomposition (DTLD) used to initi alize PARAFAC (not detailed in 
this talk).
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Other algorithms

Existing algorithms for PARAFAC can be adapted to Blo ck-Component-
Decompositions. Examples:

� Levenberg-Marquardt algorithm (Gauss-Newton type method),

� Simultaneous Diagonalization (SD) algorithms � let’s say a few words on 
this technique.

SD for PARAFAC (De Lathauwer, 2006)

� Initial condition to reformulate PARAFAC in terms of SD:

� PARAFAC decomposition can be computed by solving a SD problem:

� Advantage: Low complexity  (only R matrices of size RxR to diagonalize + 
direct use of existing fast algorithms designed for SD)

� SD reformulation yields a  uniqueness bound generically more relaxed 
than Kruskal bound

min( , )IJ K R≥

,  n=1,...,R,   is R R  diagonalT
n n n= ×M WD W D

2
1

2
1

2
1

  et  
)R(R)J(J)I(I

RK
−≥−−≥
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BCD - (L ,L ,1) : computation via Simultaneous Diag.

� Results established for BCD-(L,L,1), i.e., same L for the R terms

� Initial condition to reformulate BCD-(L,L,1) in terms of SD:

� Then the decomposition can be computed by solving a SD problem: 

� Advantage: Low complexity  (only R matrices of size RxR to diagonalize + 
direct use of existing fast algorithms designed for SD)

� SD reformulation yields a new, more relaxed uniqueness bound (next slide)

min( , )IJ K R≥

,  n=1,...,R,   is R R  diagonalT
n n n= ×M WD W D

(Nion & De Lathauwer, 2007)
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BCD - (L ,L ,1) : Uniqueness
(Nion & De Lathauwer, 2007)
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Sufficient bound 1

[De Lathauwer 2006]

Sufficient bound 2
[Nion & De 
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Concluding remarks on algorithmsConcluding remarks on algorithmsConcluding remarks on algorithmsConcluding remarks on algorithms

� Standard ALS sometimes slow (swamps)

� ALS+ELS (drastically) reduces swamp length at low additional complexity

� Levenberg-Marquardt � convergence very fast, less sensitive to ill-conditioned data, 
but higher complexity and memory (dimensions of Jacobian matrix=IJK)

� Simultaneous diagonalization: a very attractive algorithm (low complexity and good 
accuracy).

� Important practical considerations:

- Dimensionality reduction pre-processing step (e.g. via Tucker/HOSVD)

- Find a good initialization if possible.

� Algorithms have to be adapted to include constraints specific to applications:

- preservation of specific matrix-structures (Toeplitz, Van der Monde, etc)

- Constant Modulus, Finite Alphabet, … (e.g. in Telecoms Applications)

- non-negativity constraints (e.g. Chemometrics applications)
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BCD - (Lr ,Lr ,1) : estimation of R and L r

Problem: Given a tensor Y, how to estimate the number of terms R and the 
rank Lr of the matrices Ar and Br that yield a reasonable (Lr, Lr, 1) model?
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� Criterion 1: Simple approach: examinate singular values of 
matrix unfoldings.

� Y (JIxK) generically rank       R 

� Y (IKxJ) generically rank

� Y (KJxI) generically rank 

RKJI ≥),min(    if
∑

=

=
R

r
rLN

1
NJIK ≥),min(    if

N NIKJ ≥),min(   if

� If noise level not too high and if conditions on dimensions 
satisfied, the number of significant singular values yields an estimate 
for R and/or N.
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CORCONDIA (Core Consistency Diagnostic) 
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Core idea: PARAFAC can be seen as a particular case of Tucker model, 
where the core tensor is diagonal.

Method  [Bro et al.] 

� Choose a set of plausible values for R.

� For a given test (i.e., for a given R), fit a PARAFAC model and compute the 
Least Squares estimate of the core tensor H,

� and measure the diagonality of the core tensor:

� Examinate the core consistency measurements to select R

)1(100
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R
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H H −
−=
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Block-(L r ,Lr ,1) CORCONDIA

Core idea: BCD-(Lr ,Lr , 1) can be seen as a particular case of Tucker model, 
where the core tensor is « block-diagonal ».
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Block-(L r ,Lr ,1) CORCONDIA

Criterion 2: So we can proceed in a way similar to CORCONDIA for PARAFAC

� Choose a set of plausible values for R and Lr , r=1,…,R.

� For a given test (i.e., for given R and Lr ‘s), fit a BCD-(Lr ,Lr ,1) model and 
compute the Least Squares estimate of the core tensor H,

� and measure the block - diagonality of the core tensor:

� Examinate the multiple core consistency measurements to select the most 
plausible parameters

Criterion 3 : Similarly to PARAFAC, better to couple Block-CORCONDIA to 
other criteria, e.g., examination of the relative Fit to the (Lr , Lr, 1) model:

)1(100
2ˆ

RLCOR
FC

H H −
−=

)1(100 2
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F

F

FitC
 Y

Y Y −
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Block-(L r ,Lr ,1) CORCONDIA

� Example 1: I=12, J=12, K=50, L=2, R=3  (L=L1=L2=L3 )

Complex data (random), and SNR=10 dB

Test:  Rtry = {1,2,3,4,5,6} and Ltry={1,2,3,4}

Note: For each (R,L) pair, the decomposition is computed via ALS+ELS 
algorithm and 5 different starting points.

100  100  100  100
99   99.8 < 0  < 0
98.9  99.4 < 0  < 0
84.8 30.9  < 0  < 0
< 0    < 0   < 0   < 0
< 0    < 0   < 0   < 0

Ltry

Rtry

Ltry

22.3  36.6  38.1  39.3
38.6  66.6  67.8  69.1
56.3  91.2 91.3  91.4
71.4  91.5  91.7  91.8
84.1  91.7  91.9  92.1
91.5  92.0  92.3  92.4

Rtry

CFit= CCOR=

� L=2 and R=3 corresponds to the intersection of the a cceptable 
values of Fit and the ones for Core Consistency .
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Block-(L r ,Lr ,1) CORCONDIA

� Example 2: I=12, J=12, K=50, L=3, R=3  (L=L1=L2=L3 )

Complex data (random), and SNR=10 dB

Test:  Rtry = {1,2,3,4,5,6} and Ltry={1,2,3,4,5}

100   100   100  100  100
95.2   96.1 55.1  < 0  < 0
94.1 64.2 59.9 < 0  < 0
60.3   < 0   < 0   < 0   < 0
< 0   < 0   < 0   < 0   < 0
< 0   < 0   < 0   < 0   < 0

Ltry

CCOR=

�(R,L)=(3,2) and (R,L)=(3,3) could be chosen. 

���� Find with other criteria to help in the final decisio n

Ltry

Rtry

CFit=
20.3  32.8  38.1  40.4  41.6
37.8  60.8  68.4  69.8  70.4
54.2  81.3 91.4 91.4  91.5
68.7  88.1  91.7  91.8  91.9
78.1 91.4  91.9  91.1  92.2
82.8  91.9  92.3  92.5  92.6



Block-(L r ,Lr ,1) CORCONDIA

� Criterion 4: use the BCD-(L,L,1) structure 
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T
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� Can be seen as PARALIND (Parallel profiles with Linear Dependencies)  
[Bro, Harshman, Sidiropoulos]

� Repetition of the vectors cr in each term.

� Idea: fit a rank-N PARAFAC model (N is the number of rank-1 terms) and 
compute correlation of estimated c vectors
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Block-(L r ,Lr ,1) CORCONDIA

� From example 2, ambiguous choice: (R,L)=(3,2) or (R,L)=(3,3) ?

� Fit a rank-6 and a rank-9 PARAFAC model and check if the pairing of 
the estimated c vectors clearly appears

1 0.15  0.99   0.09  0.14  0.86
0.15  1 0.15   0.39  0.95  0.41
0.99 0.15  1        0.10  0.13  0.86
0.09  0.39  0.10   1 0.24  0.12
0.13  0.95 0.13   0.24  1       0.45
0.86  0.41  0.86   0.12 0.45  1

1 0.17  0.17  0.18  0.11  0.09  0.11  0.99  0.99
0.17  1 0.99  0.99  0.10  0.12  0.10  0.17  0.18
0.17  0.99 1       0.99  0.10  0.11  0.10  0.17  0.18
0.18  0.99 0.99  1       0.13  0.14  0.13  0.18  0.19
0.11  0.10  0.10  0.13  1       0.99 0.99  0.12  0.13
0.09  0.12  0.11  0.14  0.99   1 0.99  0.10  0.11
0.11  0.10  0.10  0.13  0.99   0.99 1      0.12  0.13
0.99 0.17  0.17  0.18  0.12   0.10  0.12  1      0.99
0.99 0.18  0.18  0.19  0.13   0.11  0.13  0.99  1

Clustering in R=3 groups of 2 
vectors « not good »

Clustering in R=3 
groups of 3 vectors     
« good »
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CDMA (« Code Division Multiple Access ») signals

� Used in 3rd generation wireless standard (UMTS)

� Allows users to communicate simultaneously in the same bandwidth 

Applications

An application of the BCD-(L r ,Lr ,1):

Blind Source Separation in telecommunications

User 1 wants to transmit ssss1====[1  -1  -1].

� CDMA code allocated to user 1: cccc1=[1  -1   1  -1].

� User 1 transmits [+ cccc1111 ---- cccc1111 - cccc1111]

� User 2 transmits his symbols spread by his own CDMA code cccc2222 , , , , 
orthogonal to cccc1111, etc
Signals received by an antenna array. 

Signal received by each antenna = mixture of signals transmitted by 
users, affected by wireless channel effects.

Purpose: Separate these signals, from exploitation of the receivPurpose: Separate these signals, from exploitation of the receivPurpose: Separate these signals, from exploitation of the receivPurpose: Separate these signals, from exploitation of the received signals ed signals ed signals ed signals 
only.only.only.only.
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Decompose YYYY to blindly estimate the transmitted symbols.  
Which decomposition to use?  � the one that best reflects the 
algebraic structure of the data

YYYY

K receive antennas

Chip rate sampling (I times 
faster than symbol rate)

Observation during J 
symbol periods

Build the 3rd order observed 
tensor YYYY

Code 
Diversity

Temporal 
Diversity

Spatial 
Diversity

An application of the BCD-(L r ,Lr ,1):

Blind Source Separation in telecommunications
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J

aaaaRRRR

ssssRRRR

ccccRRRR

+

aaaa1111

cccc1111

ssss1111
+ …=I

K

Code 
Diversity

Temporal 
Diversity

Spatial 
Diversity

YYYY1 (User 1) YYYYR (User R)
YYYY

I = length of the CDMA codes

J = number of symbols 

K = number of antennas at the receiver

« Blind » receiver: uniqueness of PARAFAC does not require prior 
knowledge of the CDMA codes, neither of pilot sequences to blindly blindly blindly blindly 
estimate the symbols of all usersestimate the symbols of all usersestimate the symbols of all usersestimate the symbols of all users.

Case 1:Case 1:Case 1:Case 1: single path propagation (no inter-symbol-interference)

Use PARAFAC [Sidiropoulos et al.]

An application of the BCD-(L r ,Lr ,1):

Blind Source Separation in telecommunications
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HHHHr � Channel matrix (channel impulse response convolved with CDMA code)

SSSSr � Symbol matrix, holds the J symbols of interest for user r

aaaar � Response of the K antennas to the angle of arrival (steering vector)

Case 2:Case 2:Case 2:Case 2: Multi-path propagation with inter-symbol-interference but far-field 
reflections only. Use PARALIND [Sidiropoulos & Dimic] or BCD-(L,L,1) [De 
Lathauwer & de Baynast]

HHHHr
SSSSr

T

aaaar

I

K

J

= ∑
=

R

r 1
I

J

Lr
Lr

K

Toeplitz structure 
(convolution)

YYYY

Lr interfering 
symbols

An application of the BCD-(L r ,Lr ,1):

Blind Source Separation in telecommunications
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I=12, J=100, L=2 for all users

K=4 antennas and R=5 users K=6 antennas and R=3 users

An application of the BCD-(L r ,Lr ,1):

Blind Source Separation in telecommunications
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Conclusion

� Block Component Decomposition in rank-(Lr ,Lr ,1) terms is a 
generalization of PARAFAC.

� Other BCD, even more general, have also been proposed [De 
Lathauwer & Nion]

� Algorithms: ALS coupled with Enhanced Line Search good 
compromise between complexity / convergence speed.

Algorithms based on Simultaneous Diagonalization (SD) also merits 
consideration (lower complexity than ALS and better accuracy)

� on-going research

� Uniqueness: SD-based reformulation also yields relaxed uniqueness 
bound � on-going research

� Selection of the number of terms R and the rank Lr is important in 
practice  (e.g. in telecoms  R=number of users, Lr = user-dependent 
channel length)


