The decomposition of a third-order tensor in R block-terms of rank-(L,L,1) Model, Algorithms, Uniqueness, Estimation of R and L

Dimitri Nion \& Lieven De Lathauwer

K.U. Leuven, Kortrijk campus, Belgium

E-mails: Dimitri.Nion@kuleuven-kortrijk.be
Lieven.DeLathauwer@kuleuven-kortrijk.be

TRICAP 2009, Nurià, Spain, June 14th-19th, 2009

Introduction

Tensor Decompositions = Powerful multi-linear algebra tools that generalize matrix decompositions.

Motivation: increasing number of applications involving manipulation of multi-way data, rather than 2-way data.

Key research axes:
\rightarrow Development of new models/decompositions
\rightarrow Development of algorithms to compute decompositions
\rightarrow Uniqueness of tensor decompositions
\rightarrow Use these tools in new applications, or existing applications where the multi-way nature of data was ignored until now
\rightarrow Tensor decompositions under constraints (e.g. imposing non-negativity or specific algebraic structures)

From matrix SVD to tensor HOSVD

- One unitary matrix (U, V, W) per mode
- \mathscr{H} is the representation of \mathscr{y} in the reduced spaces.
- We may have $L \neq M \neq N$
- \mathfrak{H} is not diagonal (difference with matrix SVD).

From matrix SVD to PARAFAC

From PARAFAC/HOSVD to Block Components
Decompositions (BCD) [De Lathauwer and Nion]

Content of this talk

- Model ambiguities
- Algorithms
- Uniqueness
- Estimation of the parameters $L_{r}(r=1, \ldots, R)$ and R
- An application in telecommunications

BCD - ($\left.L_{r}, L_{r}, 1\right)$: Model ambiguities

- BCD-($\left.L_{r}, L_{r}, 1\right)$ is said essentially unique if the only ambiguities are:

Arbitrary permutation of the R blocks in A and B and of the R columns of C

+ Each block of A and B post-multiplied by arbitrary non-singular matrix, each column of C arbitrarily scaled.
= A and B estimated up to multiplication by a block-wise permuted blockdiagonal matrix and C by a permuted diagonal matrix.

BCD - ($\left.L_{r}, L_{r}, 1\right)$: Algorithms

> Usual approach: estimate \mathbf{A}, \mathbf{B} and \mathbf{C} by minimization of

$$
\Phi=\left\|y-\sum_{r=1}^{R}\left(\mathbf{A}_{r} \mathbf{B}_{r}{ }^{T}\right) \circ \mathbf{c}_{r}\right\|_{F}^{2} \quad \circ=\text { outer product }
$$

The model is fitted for a given choice of the parameters $\left\{L_{r}, R\right\}$

BCD - ($\left.L_{r}, L_{r}, 1\right)$: ALS Algorithm

$$
\left\{\begin{array} { l }
{ \mathbf { Y } _ { \mathbf { K } \times \mathbf { J I } } = \mathbf { C } \cdot \mathbf { Z } _ { 1 } (\mathbf { B } , \mathbf { A }) } \\
{ \mathbf { Y } _ { \mathbf { J } \times \mathbf { I K } } = \mathbf { B } \cdot \mathbf { Z } _ { 2 } (\mathbf { A } , \mathbf { C }) } \\
{ \mathbf { Y } _ { \mathbf { I } \times \mathbf { K J } } = \mathbf { A } \cdot \mathbf { Z } _ { 3 } (\mathbf { C } , \mathbf { B }) }
\end{array} \quad \left\{\left\{\begin{array}{l}
\Phi=\left\|\mathbf{Y}_{\mathbf{K} \times \mathbf{J I}}-\mathbf{C} \cdot \mathbf{Z}_{1}(\mathbf{B}, \mathbf{A})\right\|_{F}^{2} \\
\Phi=\left\|\mathbf{Y}_{\mathbf{J} \times \mathbf{I K}}-\mathbf{B} \cdot \mathbf{Z}_{2}(\mathbf{A}, \mathbf{C})\right\|_{F}^{2} \\
\Phi=\left\|\mathbf{Y}_{\mathbf{I} \times \mathbf{K J}}-\mathbf{A} \cdot \mathbf{Z}_{3}(\mathbf{C}, \mathbf{B})\right\|_{F}^{2}
\end{array}\right.\right.\right.
$$

$\mathbf{Z}_{1}, \mathbf{Z}_{2}$ and \mathbf{Z}_{3} are built from 2 matrices only and have a block-wise KhatriRao product structure.

Initialisation: $\hat{\mathbf{A}}^{(0)}, \hat{\mathbf{B}}^{(0)}, k=1$
\longrightarrow while $\left|\Phi^{(k-1)}-\Phi^{(k)}\right|>\varepsilon \quad\left(\right.$ e.g. $\left.\varepsilon=10^{-6}\right)$

$$
\begin{align*}
& \hat{\mathbf{C}}^{(k)}=\mathbf{Y}_{\mathbf{K} \times \mathbf{I I}} \cdot\left[\mathbf{Z}_{1}\left(\hat{\mathbf{B}}^{(k-1)}, \hat{\mathbf{A}}^{(k-1)}\right)\right]^{\dagger} \tag{1}\\
& \hat{\mathbf{B}}^{(k)}=\mathbf{Y}_{\mathbf{J \times I K}} \cdot\left[\mathbf{Z}_{2}\left(\hat{\mathbf{A}}^{(k-1)}, \hat{\mathbf{C}}^{(k)}\right)\right]^{\dagger} \tag{2}\\
& \hat{\mathbf{A}}^{(k)}=\mathbf{Y}_{\mathbf{I X K J}} \cdot\left[\mathbf{Z}_{3}\left(\hat{\mathbf{C}}^{(k)}, \hat{\mathbf{B}}^{(k)}\right)\right]^{\dagger} \tag{3}\\
& k \leftarrow k+1
\end{align*}
$$

ALS algorithm: problem of swamps

Observation:

ALS is fast in many problems, but sometimes, a long swamp is encountered before convergence.

27000 iterations !

Long Swamps typically occur when:

- The loading matrices of the decomposition (i.e. the objective matrices) are ill-conditioned
- The updated matrices become ill-conditionned (impact of initialization)
- One of the R tensor-components in $y_{=} \mathscr{y}_{1}+\ldots+\mathscr{y}_{R}$ has a much higher norm than the R-1 others (e.g. « near-far» effect in telecommunications)

Improvement 1 of ALS: Line Search

Purpose: reduce the length of swamps

Principle: for each iteration, interpolate A, B and C from their estimates of 2 previous iterations and use the interpolated matrices in input of ALS

Improvement 1 of ALS: Line Search

[Harshman, 1970] «LSH» Choose $\rho=1.25$
[Bro, 1997] «LSB» Choose $\rho=k^{1 / 3}$ and validate LS step if decrease in Fit
[Rajih, Comon, 2005] «Enhanced Line Search (ELS) »
For REAL tensors $\Phi\left(\mathbf{A}^{(n e w)}, \mathbf{S}^{(n e w)}, \mathbf{H}^{\text {new })}\right)=\Phi(\rho)=6^{\text {th }}$ order polynomial Optimal ρ is the root that minimizes $\Phi\left(\mathbf{A}^{(\text {new })}, \mathbf{S}^{(n e w)}, \mathbf{H}^{(\text {new })}\right)$
[Nion, De Lathauwer, 2006]
«Enhanced Line Search with Complex Step (ELSCS)»
For complex tensors, look for optimal $\rho=m . e^{i \theta}$
We have $\Phi\left(\mathbf{A}^{(n e w)}, \mathbf{S}^{(n e w)}, \mathbf{H}^{(n e w)}\right)=\Phi(m, \theta)$
Alternate update of m and θ :
\rightarrow Update m : for θ fixed, $\frac{\partial \Phi(m, \theta)}{\partial m}=5^{\text {th }}$ order polynomial in m
\square Update θ : for m fixed, $\frac{\partial \Phi(m, \theta)}{\partial \theta}=6^{\text {th }}$ order polynomial in $t=\tan \left(\frac{\theta}{2}\right)$

Improvement 1 of ALS: Line Search

$>$ ELS \rightarrow Large reduction of the number of iterations at a very low additional complexity w.r.t. standard ALS

Improvement 2 of ALS: Dimensionality reduction

Compression \rightarrow Large reduction of the cost per iteration since the model is fitted in compressed space.

Comparison ALS and ALS+ELS, with three random initializations
Instead of using random initializations, could we use the observed tensor itself ?
YES For the BCD-(L,L,1), if A and B are full column rank (so I and J have to be long enough), there is an easy way to find a good intialization, in same spirit as Direct Trilinear Decomposition (DTLD) used to initialize PARAFAC (not detailed in this talk).

Other algorithms

Existing algorithms for PARAFAC can be adapted to Block-ComponentDecompositions. Examples:

\square Levenberg-Marquardt algorithm (Gauss-Newton type method),
\square Simultaneous Diagonalization (SD) algorithms \rightarrow let's say a few words on this technique.

SD for PARAFAC (De Lathauwer, 2006)

- Initial condition to reformulate PARAFAC in terms of SD: $\min (I J, K) \geq R$
\square PARAFAC decomposition can be computed by solving a SD problem:

$$
\mathbf{M}_{n}=\mathbf{W D}_{n} \mathbf{W}^{T}, \mathrm{n}=1, \ldots, \mathrm{R}, \mathbf{D}_{n} \text { is } \mathrm{R} \times \mathrm{R} \text { diagonal }
$$

\square Advantage: Low complexity (only R matrices of size RxR to diagonalize + direct use of existing fast algorithms designed for SD)
\square SD reformulation yields a uniqueness bound generically more relaxed than Kruskal bound

$$
K \geq R \text { et } \frac{I(I-1)}{2} \frac{J(J-1)}{2} \geq \frac{R(R-1)}{2}
$$

BCD - (L , L , 1) : computation via Simultaneous Diag.

(Nion \& De Lathauwer, 2007)
\square Results established for BCD-(L,L,1), i.e., same L for the R terms
\square Initial condition to reformulate BCD-(L,L,1) in terms of SD: $\min (I J, K) \geq R$
\square Then the decomposition can be computed by solving a SD problem:

$$
\mathbf{M}_{n}=\mathbf{W D}_{n} \mathbf{W}^{T}, \mathrm{n}=1, \ldots, \mathrm{R}, \mathbf{D}_{n} \text { is } \mathrm{R} \times \mathrm{R} \text { diagonal }
$$

\square Advantage: Low complexity (only R matrices of size RxR to diagonalize + direct use of existing fast algorithms designed for SD)
\square SD reformulation yields a new, more relaxed uniqueness bound (next slide)

BCD - (L , L , 1) : Uniqueness

(Nion \& De Lathauwer, 2007)

Sufficient bound 1
[De Lathauwer 2006]

$$
\begin{equation*}
L R \leq I J \text { and } \min \left(\left\lfloor\frac{I}{L}\right\rfloor, R\right)+\min \left(\left\lfloor\frac{J}{L}\right\rfloor, R\right)+\min (K, R) \geq 2(R+1) \tag{1}
\end{equation*}
$$

Sufficient bound 2 [Nion \& De Lathauwer, 2007]:

$$
\begin{equation*}
R \leq \min (I J, K) \text { and } \mathrm{C}_{1}^{L+1} \cdot \mathrm{C}_{J}^{L+1} \geq \mathrm{C}_{\mathrm{R}+\mathrm{L}}^{\mathrm{L}+1}-R \tag{2}
\end{equation*}
$$

$$
\mathrm{C}_{\mathrm{n}}^{\mathrm{k}}=\frac{n!}{k!(n-k)!}
$$

New Bound much more relaxed

Concluding remarks on algorithms

\rightarrow Standard ALS sometimes slow (swamps)
\rightarrow ALS+ELS (drastically) reduces swamp length at low additional complexity
\rightarrow Levenberg-Marquardt \rightarrow convergence very fast, less sensitive to ill-conditioned data, but higher complexity and memory (dimensions of Jacobian matrix=IJK)
\rightarrow Simultaneous diagonalization: a very attractive algorithm (low complexity and good accuracy).
\rightarrow Important practical considerations:

- Dimensionality reduction pre-processing step (e.g. via Tucker/HOSVD)
- Find a good initialization if possible.
\rightarrow Algorithms have to be adapted to include constraints specific to applications:
- preservation of specific matrix-structures (Toeplitz, Van der Monde, etc)
- Constant Modulus, Finite Alphabet, ... (e.g. in Telecoms Applications)
- non-negativity constraints (e.g. Chemometrics applications)

BCD - $\left(L_{r}, L_{r}, 1\right)$: estimation of R and L_{r}

Problem: Given a tensor थु, how to estimate the number of terms R and the rank L_{r} of the matrices A_{r} and B_{r} that yield a reasonable $\left(L_{r}, L_{r}, 1\right)$ model?

\square Criterion 1: Simple approach: examinate singular values of matrix unfoldings.
> \mathbf{Y} (JlxK) generically rank
$N^{\mathrm{R}}=\sum_{r=1}^{R} L_{r}$
> \mathbf{Y} (KJxl) generically rank N
if $\min (I I, K) \geq R$
if $\min (K, J) \geq N$
if $\min (K J, I) \geq N$

If noise level not too high and if conditions on dimensions satisfied, the number of significant singular values yields an estimate for R and/or N .

CORCONDIA (Core Consistency Diagnostic)

Core idea: PARAFAC can be seen as a particular case of Tucker model, where the core tensor is diagonal.

Method [Bro et al.]

\square Choose a set of plausible values for R.
\square For a given test (i.e., for a given R), fit a PARAFAC model and compute the Least Squares estimate of the core tensor \mathscr{H},
\square and measure the diagonality of the core tensor: $C=100\left(1-\frac{\|\mathscr{H}-\mathscr{\mathscr { K }}\|_{F}^{2}}{R}\right)$
\square Examinate the core consistency measurements to select R

Block-($\left.\mathrm{L}_{r}, \mathrm{~L}_{r}, 1\right)$ CORCONDIA

Core idea: BCD-($\left.L_{r}, L_{r}, 1\right)$ can be seen as a particular case of Tucker model, where the core tensor is «block-diagonal ».

Block-($\left.\mathrm{L}_{r}, \mathrm{~L}_{r}, 1\right)$ CORCONDIA

Criterion 2: So we can proceed in a way similar to CORCONDIA for PARAFAC
\square Choose a set of plausible values for R and $L_{r}, r=1, \ldots, R$.
\square For a given test (i.e., for given R and L_{r} 's), fit a BCD-($\left.L_{r}, L_{r}, 1\right)$ model and compute the Least Squares estimate of the core tensor $\mathfrak{H K}$,
\square and measure the block - diagonality of the core tensor:

$$
C_{C O R}=100\left(1-\frac{\|\mathscr{K}-\mathscr{\mathscr { K }}\|_{F}^{2}}{R L}\right)
$$

\square Examinate the multiple core consistency measurements to select the most plausible parameters
Criterion 3: Similarly to PARAFAC, better to couple Block-CORCONDIA to other criteria, e.g., examination of the relative Fit to the $\left(L_{r}, L_{r}, 1\right)$ model:

$$
C_{F i t}=100\left(1-\frac{\|y-\hat{y}\|_{F}^{2}}{\|y\|_{F}^{2}}\right)
$$

Block-($\left.\mathrm{L}_{r}, \mathrm{~L}_{r}, 1\right)$ CORCONDIA

\square Example 1: $I=12, J=12, K=50, L=2, R=3\left(L=L_{1}=L_{2}=L_{3}\right)$
Complex data (random), and SNR=10 dB
Test: $R_{\text {try }}=\{1,2,3,4,5,6\}$ and $L_{\text {try }}=\{1,2,3,4\}$
Note: For each (R, L) pair, the decomposition is computed via ALS+ELS algorithm and 5 different starting points.

$\rightarrow \mathrm{L}=2$ and $\mathrm{R}=3$ corresponds to the intersection of the acceptable values of Fit and the ones for Core Consistency.

Block-($\left.\mathrm{L}_{r}, \mathrm{~L}_{r}, 1\right)$ CORCONDIA

Example 2: $I=12, J=12, K=50, L=3, R=3 \quad\left(L=L_{1}=L_{2}=L_{3}\right)$
Complex data (random), and SNR=10 dB
Test: $\quad R_{\text {try }}=\{1,2,3,4,5,6\}$ and $L_{\text {try }}=\{1,2,3,4,5\}$

$\rightarrow(R, L)=(3,2)$ and $(R, L)=(3,3)$ could be chosen.
\rightarrow Find with other criteria to help in the final decision

Block-($\left.\mathrm{L}_{r}, \mathrm{~L}_{r}, 1\right)$ CORCONDIA

\square Criterion 4: use the BCD-(L,L,1) structure

\square Can be seen as PARALIND (Parallel profiles with Linear Dependencies) [Bro, Harshman, Sidiropoulos]
\square Repetition of the vectors \mathbf{c}_{r} in each term.
\square Idea: fit a rank- N PARAFAC model (N is the number of rank-1 terms) and compute correlation of estimated \mathbf{c} vectors

Block-($\left.L_{r}, L_{r}, 1\right)$ CORCONDIA

\square From example 2, ambiguous choice: $(R, L)=(3,2)$ or $(R, L)=(3,3)$?
Fit a rank-6 and a rank-9 PARAFAC model and check if the pairing of the estimated \mathbf{c} vectors clearly appears

```
1
0.15 1
0.99 0.15 1 1 0.10 0.13 0.86 
0.09 0.39 0.10 1 0.24 0.12
0.13}00.950.13 0.24 1 0.40.4
0.86 0.41 0.86 0.12 0.45 1
```

1	0.17	0.17	0.18	0.11	0.09	0.11	0.99	0.99		
0.17	1	0.99	0.99	0.10	0.12	0.10	0.17	0.18		
0.17	0.99	1	0.99	0.10	0.11	0.10	0.17	0.18		
0.18	0.99	0.99	1	0.13	0.14	0.13	0.18	0.19		
0.11	0.10	0.10	0.13	1	0.99	0.99	0.12	0.13		
0.09	0.12	0.11	0.14	0.99	1	0.99	0.10	0.11		
0.11	0.10	0.10	0.13	0.99	0.99	1	0.12	0.13		
0.99	0.17	0.17	0.18	0.12	0.10	0.12	1	0.99		
0.99	0.18	0.18	0.19	0.13	0.11	0.13	0.99	1	\quad	Clustering in $R=3$
:---										
groups of 3 vectors										

Blind Source Separation in telecommunications

CDMA (« Code Division Multiple Access ») signals
\rightarrow Used in 3rd generation wireless standard (UMTS)
\rightarrow Allows users to communicate simultaneously in the same bandwidth
User 1 wants to transmit $\mathrm{s}_{1}=\left[\begin{array}{lll}1 & -1 & -1\end{array}\right]$.
\rightarrow CDMA code allocated to user 1: $\mathrm{C}_{1}=\left[\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right]$.
\rightarrow User 1 transmits [$+\mathrm{c}_{1}-\mathrm{C}_{1}-\mathrm{c}_{1}$]
\rightarrow User 2 transmits his symbols spread by his own CDMA code C_{2}, orthogonal to c_{1}, etc
Signals received by an antenna array.
Signal received by each antenna = mixture of signals transmitted by users, affected by wireless channel effects.
Purpose: Separate these signals, from exploitation of the received signals only.

An application of the BCD-($\mathrm{L}_{\mathrm{r}}, \mathrm{L}_{\mathrm{r}}, 1$):
Blind Source Separation in telecommunications

Decompose y to blindly estimate the transmitted symbols. Which decomposition to use? \rightarrow the one that best reflects the algebraic structure of the data

An application of the BCD-($\left.\mathrm{L}_{r}, \mathrm{~L}_{r}, 1\right)$:

Blind Source Separation in telecommunications

Case 1: single path propagation (no inter-symbol-interference)
Use PARAFAC [Sidiropoulos et al.]

I = length of the CDMA codes
$\mathrm{J}=$ number of symbols
$\mathrm{K}=$ number of antennas at the receiver
« Blind » receiver: uniqueness of PARAFAC does not require prior knowledge of the CDMA codes, neither of pilot sequences to blindly estimate the symbols of all users.

An application of the BCD-($\left.\mathrm{L}_{r}, \mathrm{~L}_{r}, 1\right)$:

Blind Source Separation in telecommunications

Case 2: Multi-path propagation with inter-symbol-interference but far-field reflections only. Use PARALIND [Sidiropoulos \& Dimic] or BCD-(L,L,1) [De Lathauwer \& de Baynast]

$\mathrm{H}_{\mathrm{r}} \rightarrow$ Channel matrix (channel impulse response convolved with CDMA code)
$\mathrm{S}_{\mathrm{r}} \rightarrow$ Symbol matrix, holds the J symbols of interest for user r
$a_{r} \rightarrow$ Response of the K antennas to the angle of arrival (steering vector)

An application of the BCD-($\left.\mathrm{L}_{\mathrm{r}}, \mathrm{L}_{\mathrm{r}}, 1\right)$:

Blind Source Separation in telecommunications

$\mathrm{I}=12, \mathrm{~J}=100, \mathrm{~L}=2$ for all users

$\mathrm{K}=4$ antennas and $\mathrm{R}=5$ users

$\mathrm{K}=6$ antennas and $\mathrm{R}=3$ users

Conclusion

\square Block Component Decomposition in rank-($\left.L_{r}, L_{r}, 1\right)$ terms is a generalization of PARAFAC.
\square Other BCD, even more general, have also been proposed [De Lathauwer \& Nion]
\square Algorithms: ALS coupled with Enhanced Line Search good compromise between complexity / convergence speed.

Algorithms based on Simultaneous Diagonalization (SD) also merits consideration (lower complexity than ALS and better accuracy) \rightarrow on-going research
\square Uniqueness: SD-based reformulation also yields relaxed uniqueness bound \rightarrow on-going research
\square Selection of the number of terms R and the rank L_{r} is important in practice (e.g. in telecoms $R=$ number of users, $L_{r}=$ user-dependent channel length)

