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Preliminary
Tensor Decompositions 
Q: What is this ?

R: Powerful multi-linear algebra tools that generalize 
matrix decompositions.

Q: Where are they useful ?
R: Increasing number of applications involve manipulation 
of multi-way data, rather than 2-way data.

Q: How powerful are they compared to matrix decompositions?
R: Uniqueness properties + Better exploitation of the multi-
dimensional nature of data

Key research axes:
� Development of new models/decompositions
� Development of algorithms to compute decompositions
� Uniqueness bounds of tensor decompositions
� New applications, or existing applications where the multi-

way nature of data was ignored until now
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What is a tensor ?
I. Introduction

Tensor of order N = Array with N dimensions

For N>2, « Higher-Order Tensors »

y

Y

YYYY

= 1st-order tensor

= 2nd-order tensor

= 3rd-order tensor
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General motivation for using tensor signal representation 
and processing :

« If by nature, a signal is multi-dimensional, then i ts 
tensor representation allows to use multilinear alg ebra 
tools, which are more powerful than linear algebra 
tools. »

Multi-Way Processing, why?
I. Introduction

Many signals are tensors :

- (R,G,B) image can be represented as a tensor

- Video sequence is a tensor of consecutive frames

- Multi-variate signals, varying e.g. with time, temperature, 
illumination, sensor positions, etc… 
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Tensor models: an increasing number of applications

I Introduction

Various disciplines:

� Phonetics

� Psychometry

� Chemometrics (spectroscopy, chromatography)

� Image and video compression and analysis

� Scientific programming

� Sensor analysis

� Multi-Way Principal Component Analysis (PCA)

� Blind Source Separation and Independent Component 
Analysis (ICA)

� Telecommunications (wireless communications)
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I. Introduction

Multi-Way Data

YYYYI

J

K Set of K matrices of size IxJ

One matrix observed K times                          
(ex: K = time, K = number of sensors, etc)

� 3-way tensor (« third-order tensor »)

How to perform Multi-Way Analysis?

- Via tensor-algebra tools  (=multilinear algebra tools)

- Matrix tools (SVD, EVD, QR, LU) have to be generalized

�Tensor Decompositions

Multiple variables � extension to N-way tensors
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I. Introduction

Tensor Unfolding (“matricization”)

KJIY ×=

IKJY ×=

JIKY ×=

J
K

I
kY

iY

jY

YYYY
1Y KY...I

J J

1Y IY...J

K K

1Y JY...K

I I

Multi-Way Analysis?

- One can choose one matrix representation of Y and apply matrix tools        
(ex: matrix SVD for Principal Component Analysis (PCA))

- Problem: the multi-way structure is then ignored

- Feature of N-way analysis: exploit the N matrices simultaneously
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I. Tensor Decompositions

Matrix Singular Value Decomposition (SVD)

Y

J

I =

R

R
U

HV
S

 and H H= =U U I V V I

1( , ..., )Rdiag σ σ=S � Singular values in decreasing order

� unitary matrices

If rank(Y)>R, this truncated SVD is the best rank-R approx. of Y

In general a matrix factorization Y=UVH is not unique:

Y=UVH=UPP-1VH

The SVD is unique because of unitary constraints on U and V and 
ordering constraint of the singular values in S



Tucker-3 Decomposition  [Tucker 1966]

1 1 1

L M N

ijk il jm kn lmn
l m n

y a b c h
= = =

=∑∑∑

1 2 3= × × ×A B CY H

I. Tensor Decompositions

� TuckerTuckerTuckerTucker----3 = 33 = 33 = 33 = 3----way PCAway PCAway PCAway PCA. One unitary base (AAAA, BBBB, CCCC) per mode 
(Tucker-1, Tucker-2,…, Tucker-N are possible).

� If AAAA, BBBB, CCCC are unitary matrices, TUCKER=HOSVD (« Higher 
Order Singular Value Decomposition »)

� H H H H is the representation of YYYY in the reduced spaces.

� The number of principal components may be different in the 
three modes i.e.                  

� HHHH is not not not not diagonal (difference with matrix SVD).

L M N≠ ≠

TB
A HYI

J

K

=
L

N

M

C
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Uniqueness of Tucker-3 Decomposition
I. Tensor Decompositions

TB

AYI

J

K

=
HL

N

M

C

1P1
1
−P 2P 1

2
−P

1
3
−P

3P

New core tensor

� Tucker not unique: rotational freedom in each mode.

� A, B, C are not unique (only subspace estimates).
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The best rank-(L,M,N) approximation [De Lathauwer, 2000]

1YI =
U

HV
S

Y 1 = truncated Matrix SVD of Y

=

Y1 is the best lower rank approximation of Y (in 
the Frobenius norm sense):

Min ||Y-Y1||F

s.t. Y1 is rank-R

Question: Is the truncated HOSVD, the best rank-(L,M,N) approximation of Y  Y  Y  Y  ?   NO

TB
A HY -

C

F

L
M

N
Min

The truncated HOSVD is only a good rank-(L,M,N) approximation of YYYY.

To find the best one, one usually starts with the truncated HOSVD (initialization) 
and then alternate updates of the 3 subspace matrices A, B and C.
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PARAFAC Decomposition [Harshman 1970]

C

AYI

J

K

=

I. Tensor Decompositions

=

ccccRRRR

bbbbRRRR

aaaaRRRR

+

cccc1111

aaaa1111

bbbb1111
+ …

HHHH is diagonal 

( if i=j=k, hijk=1, else, hijk=0 )

Sum of R rank-1 tensors:

YYYY1+…+ YYYYRRRR

=

H
R

R

R

C

A

Y Y Y Y = set of K matrices of the 
form:

YYYY(:,:,k)=A A A A diag(CCCC(k,:)) BBBBT

K

TB

TB
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Uniqueness of PARAFAC Decomposition (1)
I. Tensor Decompositions

TB

AYI

J

K

=

C

1DΠ 2D Π

Π
3D

H
R

R

R

1 2 3with R=D D D I

Permutation matrix
Scaling matrix

� Under mild conditons (next slide) PARAFAC is unique: only trivial 
ambiguities remain on A, B and C (permutation and scaling of columns). 

� PARAFAC decomposition gives the true matrices A, B and C (up to the 
trivial ambiguities) � this is a key feature compared to matrix SVD (which 
gives only subspaces)
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Uniqueness of PARAFAC Decomposition (2)
I. Tensor Decompositions

(2)         )(R+(K,R)(J,R)+(I,R)+ 12minminmin ≥

(3)                   
2

1
2

1
2

1
  et  

)R(R)K(K)I(I
RJ

−≥−−≥

Generically, kAAAA=min(I,R)

2 2 (1)k k Rk ≥+ ++B CA           

Rela e  o n  (real an  comple  cases)

[De Lathauwer 2005] :

kA is the Kruskal-rank of A

Uniqueness condition [Kruskal, 1977]

o n  ( ) s o n  ( )
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PARAFAC vs Tucker 3

1
i r j kj k

r
ri r

R

y a b c
=

= ∑

I. Tensor Decompositions

HHHH is diagonal 

TB
A HYI

J

K

=
L

N

M

C

PARAFAC TUCKER 3

1 1 1

L M N

ijk il jm kn lmn
l m n

y a b c h
= = =

= ∑ ∑ ∑

HHHH is not diagonal 

L=M=N � AAAA, BBBB and C C C C have the 
same nb. of columns

� AAAA, BBBB and C do not C do not C do not C do not 
necessarily have the same nb. of columns

L M N≠ ≠

Unique (trivial ambiguities):               Unique (trivial ambiguities):               Unique (trivial ambiguities):               Unique (trivial ambiguities):               
Only arbitrary scaling and 
permutation remains .

Not unique:                                 Not unique:                                 Not unique:                                 Not unique:                                 
Rotational freedom still remains. 
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Block Component Decomposition in rank-(L r,Lr,1) terms
I. Tensor Decompositions

� First generalization of PARAFAC in block terms [De Lathauwer, de Baynast, 
2003] � If Lr=1 for all r, then BCD-(Lr,Lr,1)=PARAFAC 

� Unknown matrices: 

J

YI

K

= 1
TB

1A

L1

1c

L1
+ … +

T
RB

RA

LR

Rc

LR BCD-(L r,Lr,1) 

1A RA...

L1 LR

I=A
1B RB...

L1 LR

J=B =C ...

1c Rc

K

� BCD-(Lr,Lr,1) is said unique if the only remaining ambiguities are:

� Arbitrary permutation of the blocks in AAAA and B B B B and of the columns of CCCC

� Rotational freedom of each block (block-wise subspace estimation) + 
scaling ambiguity on the columns of CCCC
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Uniqueness of the BCDUniqueness of the BCDUniqueness of the BCDUniqueness of the BCD----(L,L,1) (i.e., L(L,L,1) (i.e., L(L,L,1) (i.e., L(L,L,1) (i.e., L1111=L=L=L=L2222=…=L=…=L=…=L=…=LRRRR=L)=L)=L)=L)

(2)       CCC  and  1L
LR

1L
J

1L
I RKIJR −≥≤ +

+
++ .),min(

(1)   and          )(R+(K,R),R)+
L

J
(,R)+

L

I
(IJLR 12minminmin ≥≤











Sufficient bound 1

[De Lathauwer
SIMAX 2008]

Sufficient bound 2
[Nion, PhD Thesis, 
2007] :

where  
)!(!

!

knk

n

−
=k

nC

I. Tensor Decompositions
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Block Component Decomposition in rank-(L r,Mr,Nr) terms
I. Tensor Decompositions

� Introduced by De Lathauwer in 2005

� Very General frameworkVery General frameworkVery General frameworkVery General framework �generalization of PARAFAC, BCD-(Lr,Lr,1) and 
Tucker/HOSVD

� Sum of R Tucker decompositions

� Unknowns: 

BCD-(L r,Mr,Nr) 

YI

J

K

= 1
TB

1A 1HL1

N1

M1

1C

T
RB

RA HRLR

NR

MR

RC

+…+

1A RA...

L1 LR

I=A
1B RB...

M1 MR

J=B
1C RC...

N1 NR

K=C

1H HR
H = ...

� Ambiguities: same as Tucker model for each of the R components
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Algorithms : basics 
� Decompose YYYY Estimate components A, B and C

� Minimization of the Frobenius norm of residuals
2

)ˆˆˆ(Φ
F

Tens ASH ,,Y= − Tens = PARAFAC or BCD-(L,L,1) or BCD-(L,P,.)

Z1, Z2 and Z3 are built from 2 matrices only and their structure depends 
on the decomposition (PARAFAC, BCD-(L,L,1), etc)

),(

),(

),(

BCZAY

CAZBY

ABZCY

KJI

IKJ

JIK

3

2

1

⋅=
⋅=
⋅=

×

×

×

2

3

2

2

2

1

F

F

F

),(

),(

),(

BCZAY

CAZBY

ABZCY

KJI

IKJ

JIK

⋅−=Φ

⋅−=Φ

⋅−=Φ

×

×

×

Main idea: exploit the structure of the three matrix unfoldings simultanesouly
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ALS «ALS «ALS «ALS « Alternating Least SquaresAlternating Least SquaresAlternating Least SquaresAlternating Least Squares » algorithm» algorithm» algorithm» algorithm

� Principle: Alternate updates of AAAA=[AAAA1,…,AAAAR], BBBB=[BBBB1,…,BBBBR] and CCCC=[CCCC1,…,CCCCR] in 
the Least Squares sense.

� Each update = minimization of the cost function w.r.t. one the 3 matrix 
unfoldings

[ ]
[ ]
[ ]

1

)3()ˆ,ˆ(ˆ

)2()ˆ,ˆ(ˆ

)1()ˆ,ˆ(ˆ

1,ˆ,ˆ

)()()(

)()1()(

)1()1()(

)()1(

)0()0(

+←
⋅=

⋅=

⋅=

=>Φ−Φ

=

×

−
×

−−
×

−

kk

while

k

kkk

kkk

kkk

kk

BCZYA

CAZYB

ABZYC

BA

KJI

IKJ

JIK

3

2

1

6- )10  (e.g.    

 :tionInitialisa

εε
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ALS algorithm: problem of swampsALS algorithm: problem of swampsALS algorithm: problem of swampsALS algorithm: problem of swamps

Long swamp

Long Swamps typically occur when:

- The loading matrices of the decomposition (i.e. th e objective matrices) are 
ill-conditioned

-The updated matrices become ill-conditionned (impac t of initialization)

- One of the R tensor-components in Y = YY = YY = YY = Y1 1 1 1 + … + Y+ … + Y+ … + Y+ … + YR has a much higher 
norm than the R-1 others (e.g. « near-far » effect in  telecommunications)

27000 iterations !

Observation:

ALS is fast in many problems, 
but sometimes, a long swamp 
is encountered before 
convergence.
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Improvement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line Search

Principle: for each iteration, interpolate AAAA, BBBB and CCCC from their estimates 
of 2 previous iterations and use the interpolated matrices in input of

1.Line Search:

2.Then ALS update 

Choice of     crucial

=1 annihilates LS step    
(i.e. we get standard ALS)

)(

)(

)(

)2()1()2()(

)2()1()2()(

)2()1()2()(

−−−

−−−

−−−

−+=

−+=
−+=

kkknew

kkknew

kkknew

AAAA

BBBB

CCCC

ρ
ρ
ρ

ρ

Search directions

ρ

[ ]
[ ]
[ ]

1

)3()ˆ,ˆ(ˆ

)2()ˆ,ˆ(ˆ

)1()ˆ,ˆ(ˆ

)()()(

)()()(

)()()(

+←
⋅=

⋅=

⋅=

×

×

×

kk

kkk

knewk

newnewk

BCZYA

CAZYB

ABZYC

KJI

IKJ

JIK

3

2

1

Purpose: reduce the length of swamps
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[Harshman, 1970] « LSH » 25.1=ρ Choose

[Rajih, Comon, 2005] « Enhanced Line Search (ELS) »

),,(

6)(),,(
)()()(

)()()(

newnewnew

thnewnewnew

HSA

HSA

Φ

=Φ=Φ

 minimizes that root the is  Optimal

.polynomial order    tensors REAL For

ρ
ρ

[Nion, De Lathauwer, 2006]

«Enhanced Line Search with Complex Step (ELSCS) »

)
2

tan(
),(

:

),(
:

),(),,(

.
)()()(

θ
θ

θθ

θθ

θ
θ
ρ θ

==
∂

Φ∂

=
∂

Φ∂

Φ=Φ

=

t
m

m

m
m

m
m

m

m

em
newnewnew

i

 in polynomial order 6  fixed,  for  Update

 in polynomial order5  fixed,  for  Update

:  and  of update Alternate

 have We

   optimal for look tensors, complex For

th

 th

HSA

[Bro, 1997] « LSB » Fit  in  decrease if step LS validate and  Choose 3/1k=ρ

Improvement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line Search



27

Improvement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line SearchImprovement 1 of ALS: Line Search
«easy» problem «difficult» problem

� Line Search � Large reduction of the number of iterations at a very low 
additional complexity w.r.t. standard ALS  

27000 iterations2000 iterations
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Improvement 2 of ALS: CompressionImprovement 2 of ALS: CompressionImprovement 2 of ALS: CompressionImprovement 2 of ALS: Compression

TB
A HYI

J

K

=
L

N

M

C

TB
A

=

C

+…+

STEP 1:

Fit a Tucker Model on Y
STEP 2:

Fit the model on the small core 
tensor H H H H (compressed space)

STEP 3:

Come back to original space

� Compression � Large reduction of the cost per iteration since the model is 
fitted in compressed space.



29

Improvement 3 of ALS: Good initializationImprovement 3 of ALS: Good initializationImprovement 3 of ALS: Good initializationImprovement 3 of ALS: Good initialization

Comparison ALS and ALS+ELS, with three random initializations

Instead of using random initializations, could we u se the observed tensor itself ?
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Improvement 3 of ALS: Good initializationImprovement 3 of ALS: Good initializationImprovement 3 of ALS: Good initializationImprovement 3 of ALS: Good initialization

Slices Yk (IxJ) of YYYY :

T
KK

T

T

SHY

SHY

SHY

⋅Λ⋅=

⋅Λ⋅=

⋅Λ⋅=

MM

22

11

iΛ

HHYY ⋅Λ⋅Λ⋅=⋅ − )()( 1

2121 kkkk

)0(Ĥ

� Called Direct Trilinear Decomposition (DTLD) 

� If no noise, the model is exact DTLD gives the exact solution.

� If noise is present, DTLD gives a good initialization

� The same holds for Block Component Decompositions          
(via generalization of DTLD)

� To keep in mind: can only be used if at least 2 dimensions are 
long enough     (For PARAFAC: )

)0(Ŝ )0(Â

, where the         are diagonal

For PARAFAC:  if , the slices Yk are generically rank-Rmin( , )R I J≤

For any pair (k1, k2) :

Estimate         as the R principal eigenvectors. Then deduce   and  

min( , )R I J≤
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One initialization via DTLDOne random initialization

Simulations with BCD-(L,L,1), I=8, J=100, K=8, L=2, R=4 

Improvement 3 of ALS: Good initializationImprovement 3 of ALS: Good initializationImprovement 3 of ALS: Good initializationImprovement 3 of ALS: Good initialization

� If dimensions allow it, use the DTLD-initialization + only 2 or 3 random 
initializations

� Else, use e.g., 10 random initializations

� It does not make sense to draw general conclusions on the average 
performance (e.g. BER curves with Monte Carlo runs) with only one initialization.
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Concluding remarks on algorithmsConcluding remarks on algorithmsConcluding remarks on algorithmsConcluding remarks on algorithms

� Standard ALS sometimes slow (swamps)

� ALS+ELS (sometimes drastically) reduces swamp length at low additional 
complexity

� Other algorithms: e.g. Levenberg-Marquardt � convergence very fast, not very 
sensitive to ill-conditioned data, but higher complexity and memory (dimensions of 
Jacobian matrix=IJK)

� Important practical considerations:

- Dimensionality reduction pre-processing step (via Tucker/HOSVD)

- Initialization via DTLD if possible

� Algorithms have to be adapted to include constraints specific to applications:

- preservation of specific matrix-structures (Toeplitz, Van der Monde, etc)

- Constant Modulus, Finite Alphabet, …

- non-negativity constraints (e.g. Chemometrics applications)
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Applications

Learning Database: 

28 People
3 Expressions
5 Viewpoints
3 Illuminations

45 images per person 

7943 pixels per image

Application 1: Tensor Faces & Face Recognition
[Vasilescu & Terzopoulos, 2003]

Objective: associate input image (7943x1) to one of the 28 people
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Upeople

Applications

Application 1: Tensor Faces & Face Recognition
[Vasilescu & Terzopoulos, 2003]

Y =

SVD

7943

pixels

1260 (28x3x5x3)

UUUUpixel (7943x1260) 

spans the space of images

� 1 image represented by one vector of 1260 coefficients in VVVV

� 1 person represented by a set of 45 vectors in VVVV

Standard approach: 2-Way PCA

Σ1

1260

1260

PCA Coefficients
PCA Basis

VVVV

Input Image dddd (7943x1)

1) Projection of dddd in the space of PCA coefficients:  c c c c = UUUUH
pixeld   d   d   d   (1260x1)

2) mini||c c c c –––– vvvvi|| to associate score vector c c c c to one person



N-Way PCA

Applications

Application 1: Tensor Faces & Face Recognition
[Vasilescu & Terzopoulos, 2003]

� tensor Y  Y  Y  Y  (7943x5x3x3x28)Y7943

pixels

1260 (28x3x5x3)

1 2 3 4 5Y H pixels views illums express people= × × × × ×U U U U U

5-Way Tucker

UUUUpixels (7943x7943)  spans the space of images

UUUUpeople (28x28)  spans the space of people parameters

UUUUviews (5x5)  spans the space of viewpoint parameters

UUUUillums (3x3)  spans the space of illumination parameters

UUUUexpress (3x3)  spans the space of expression parameters

���� HHHH describes how the different modes interact

�Compression flexibility: greater control than 2-Way PCA (truncation of the 
different bases independently)
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N-Way PCA

Applications

Application 1: Tensor Faces & Face Recognition
[Vasilescu & Terzopoulos, 2003]

1 2 3 4 5Y H pixels views illums express people= × × × × ×U U U U U

5B people= × U
28

28
7943x5x3x3x28

1) For all triplets (view,illums,express), build the basis Bv,i,e  (7943x28) and 
project unknown image

2) Compare the 28x1 score vector c to the loadings in Upeople

mini ||c-u i||

to associate the input image d to one of the 28 persons

dBc ei,v,=

Performance comparison (recognition rate):

2-Way PCA   27% 5-Way PCA:  88%
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Applications

Application 2: Chemometrics- Analysis of fluorescence         
data via PARAFAC       [R. Bro, 1997]

Data set: 

�2 chemical samples, each containing different and unknown 
concentrations of 3 unknown chemical components.
Goal: 

� Find which chemical components are present in the 
samples

Method: fluorescence

�Excitation of the samples with 51 wavelengths (250-300nm)

�Measure of the intensity of emission over 201 wavelengths 
(250-450nm) 
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Applications

Data cube Y Y Y Y (51x201x2): holds the whole set of measured 
intensities, for the two samples

Fit PARAFAC model with R=3 components

cccc3333

bbbb3333

aaaa3333

+

cccc1111

aaaa1111

bbbb1111
+

=51

2

201

cccc2222

bbbb2222

aaaa2222 Reference intensity for the 
excitation/emission 
wavelengths pairs

Concentration in each 
sample

Identification of 3 chemical components with only 2 samples

� thanks to uniqueness of PARAFAC decomposition

Application 2: Chemometrics- Analysis of fluorescence         
data via PARAFAC       [R. Bro, 1997]
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Applications

Estimated emission spectrum True excitation spectrum

Application 2: Chemometrics- Analysis of fluorescence         
data via PARAFAC       [R. Bro, 1997]

Results from paper « PARAFAC: tutorial and applicati ons », by Rasmus Bro, 1997
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CDMA (« Code Division Multiple Access »)

� Used in 3rd generation standard (UMTS)

� Allows users to communicate simultaneously in the same 
bandwidth 

Applications

Application 3: Telecommunications - Blind CDMA   
system via PARAFAC and its generalization

User 1 wants to transmit ssss1====[1  -1  -1].

� CDMA code allocated to user 1: cccc1=[1  -1   1  -1].

� User 1 transmits [+ cccc1111 ---- cccc1111 - cccc1111]

� User 2 transmits his symbols spread by his own CDMA 
code cccc2222 orthogonal to cccc1111, etc
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Decompose YYYY to blindly estimate the transmitted symbols.  
Which decomposition to use?  � the one that best reflects the 
algebraic structure of the data

Applications

Application 3: Telecommunications - Blind CDMA   
system via PARAFAC and its generalization

YYYY

K receive antennas

Chip rate sampling (I times 
faster than symbol rate)

Observation during J 
symbol periods

Build the 3rd order observed 
tensor YYYY

Code 
Diversity

Temporal 
Diversity

Spatial 
Diversity
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Applications

J

aaaaRRRR

ssssRRRR

ccccRRRR

+

aaaa1111

cccc1111

ssss1111
+ …=I

K

Code 
Diversity

Temporal 
Diversity

Spatial 
Diversity

YYYY1 (User 1) YYYYR (User R)
YYYY

I = length of the CDMA codes

J = number of symbols 

K = number of antennas at the receiver

« Blind » receiver: uniqueness of PARAFAC does not require prior 
knowledge of the CDMA codes, neither of pilot sequences to blindly blindly blindly blindly 
estimate the symbols of all usersestimate the symbols of all usersestimate the symbols of all usersestimate the symbols of all users.

Application 3: Telecommunications - Blind CDMA   
system via PARAFAC and its generalization

Case 1:Case 1:Case 1:Case 1: single path propagation (no inter-symbol-interference)

[Sidiropoulos et al., 2001][Sidiropoulos et al., 2001][Sidiropoulos et al., 2001][Sidiropoulos et al., 2001]
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Applications

HHHHr � Channel matrix (channel impulse response convolved with CDMA code)

SSSSr � Symbol matrix, holds the J symbols of interest for user r

aaaar � Response of the K antennas to the angle of arrival (steering vector)

Application 3: Telecommunications - Blind CDMA   
system via PARAFAC and its generalization

Case 2:Case 2:Case 2:Case 2: Multi-path propagation with inter-symbol-interference but 
far-field reflections only [De Lathauwer & de Baynast 2003][De Lathauwer & de Baynast 2003][De Lathauwer & de Baynast 2003][De Lathauwer & de Baynast 2003]

HHHHr
SSSSr

T

aaaar

I

K

J

= ∑
=

R

r 1
I

J

Lr
Lr

K

Toeplitz structure 
(convolution)

YYYY

Lr interfering 
symbols
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Applications

HHHHr � Channel matrix (channel impulse response convolved with CDMA code)

SSSSr � Symbol matrix, holds the J symbols of interest for user r

AAAAr � Response of the K antennas to the angles of arrival (steering vectors)

Application 3: Telecommunications - Blind CDMA   
system via PARAFAC and its generalization

Case 3:Case 3:Case 3:Case 3: Multi-path propagation with inter-symbol-interference but 
reflections not onlynot onlynot onlynot only in the far field [Nion & De Lathauwer 2006][Nion & De Lathauwer 2006][Nion & De Lathauwer 2006][Nion & De Lathauwer 2006]

K

Lr

HHHHrrrr SSSSr
T

AAAAr

I

K

J

= ∑
r= 1

R
J

Lr
s0   s1 s2 …………….   sJ-1

s-1  s0  s1  s2 ……………  sJ-2

I

Pr

Pr

YYYY

Toeplitz structure

Pr paths
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BCD-(L,P,.) with I=12, J=100, L=2, P=2 and 10 random initializations.

K=4 antennas and R=5 users K=6 antennas and R=3 users

Applications

Application 3: Telecommunications - Blind CDMA   
system via PARAFAC and its generalization
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Application 4:

Blind Source Separation (instantaneous mixtures)

Applications

« Cocktail Party Problem »

ssss1111 ssssIIII
ssss2222 ………… I sources

…………mmmm1111 mmmm2222 mmmmJJJJ
J microphones

Goal: estimate the I unknown sources ssss1,…, ssssI, from the J 
recordings mmmm1,…,mmmmJ only . (« blind source separation (BSS)»)



Applications

Data Model for linear instantaneous mixtures:

Y
N  samples

J = J

I

SH

N  samples

I

Observed matrix Mixing matrix        
(room acoustics)

Source matrix

Issues:

� How to find H and S ?

� What happens if we have more sources than sensors (I>J)        
(« under-determined case ») H is fat so not left-pseudo invertible.

� What about convolutive mixtures (to take reverberations on walls into 
account)?

Application 4:

Blind Source Separation (instantaneous mixtures)



49

Applications

Matrix factorization not unique:

Y
N

J = J

I

H S
N

IP 1−P

The SVD of Y would give us the subspaces that generate H and S, but not H and 
S themselves � We need more assumptions !

Assumption: The I sources are statistically independent

« Independent Component Analysis » (ICA), [Comon, 199 4].

+ Application-specific assumptions to reduce the ambiguity:

� Matrix-Structures (Toeplitz, Van Der Monde,…) 

� Finite Alphabet (Symbol constellation), Constant Modulus, etc

Find H that makes the source estimates as much independent as possible.

Use of Second-Order or Higher-Order Statistics (SOS or HOS)

Application 4:

Blind Source Separation (instantaneous mixtures)



Applications

« Second-Order-Blind-Identification » (SOBI)  [Belouchrani et al. 1997]

[ ]

[ ]
k

k

H
k t t

H H
t t

H
k

E

E

τ

τ

−

−

C y y

H s s H

HD H

= 

    = 

    = K delays ���� K 
covariance matrices

diagonal

1 1

H
K K

HC HD H

C HD H

M M

= 

         

= 

Use existing algorithms for Joint 
Diagonalization of a set of matrices to 
find H

SOBI relies on simultaneous diagonalization algorithms � does  
not work in under-determined cases (i.e., when H is fat)

Application 4:

Blind Source Separation (instantaneous mixtures)
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�Lower complexity than SOBI: Tucker compression in mode 3 
before fitting the PARAFAC model (K reduced to I) to find H

� Works for under-determined cases (uniqueness of PARAFAC):

Applications

« Second-Order-Blind-Identification of Under-determined mixtures » (SOBIUM)  
[Castaing & De Lathauwer 2006]

1 1

H
K K

HC HD H

C HD H

M M

= 

         

= 

D

H
HH

C

K
K

J

I

=

Symmetric PARAFAC !

26201510642Imax

8765432J

Application 4:

Blind Source Separation (instantaneous mixtures)



Application 5:

Blind Source Separation (convolutive mixtures)

Y=HS � instantaneous mixtures

Multiple reverberations on the walls  � separation of convolutive mixture
1

0

( ) ( ) ( ) ( ) 
L

l

t t l t l
−

=

= ∗ = −∑y H s H s

( , ) ( ) ( , ), 1,...,    f t f f t f F= =y H s
Time-domain methods

DFT

Solve one instantaneous ICA problem for each frequency          
� apply existing ICA techniques for instantaneous mixtures

Applications



Application 5:

Blind Source Separation (convolutive mixtures)

( , ) ( ) ( , ),

1,...,

    f t f f t

f F

=
=

y H s
( )fD

( )fH ( )H fH

C(f)

K
K

J

I

=

One Symmetric PARAFAC 
decomposition for each f

« PARAFAC-Based Blind Separation of convolutive speech mixtures »         
[Nion, Mokios, Sidiropoulos & Potamianos 2008]

Applications

Compute the F decompositions  
and collect {H(1), H(2), …, H(F)}

As before, works in under-
determined cases

After separation stage, the job is really complete after solving:

� arbitrary scaling and permutation of columns of H(f) at each frequency

� Under-determined cases: we can not compute 
† ( ), )) ( ,( ff f tt =s yH



Application 5:

Blind Source Separation (convolutive mixtures)
« PARAFAC-Based Separation of convolutive speech mixtures »               

[Nion, Mokios, Sidiropoulos & Potamianos 2008]

Applications

mic 1

AUDIO DEMO:  http://www.telecom.tuc.gr/~nikos/BSS_Nikos.html

Example 1:

I=4 speech signals, 

J=8 microphones

mic 8

Room Impulse Response (T60=200 ms)

…

1̂s 2ŝ 3ŝ 4ŝ



Application 5:

Blind Source Separation (convolutive mixtures)
« PARAFAC-Based Separation of convolutive speech mixtures »               

[Nion, Mokios, Sidiropoulos & Potamianos 2008]

Applications

mic 1

AUDIO DEMO:  http://www.telecom.tuc.gr/~nikos/BSS_Nikos.html

Example 2:

I=3 music signals, 

J=8 microphones

mic 8

Room Impulse Response (T60=200 ms)

…

1̂s 2ŝ 3ŝ
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Application 6:

Target localization in MIMO radars

Applications

�MIMO radar = emerging technology.

�Principle: send orthogonal waveforms from different antennas, 
and capture the waveforms reflected by the targets from 
different receive antennas.

� Two classes of MIMO radars: « Widely separated 
antennas » and « Closely spaced antennas »

� Exploitation of spatial diversities yields better performance (in 
terms of target localization, false alarm rate, …) compared to 
mono-antenna.
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Application 6:

Target localization in MIMO radars

Applications

Data Model (after matched filtering by orthogonal t ransmitted pulses):

Qqqtqrq ,...,1,)()( =+Σ= ZABY θθ T

Mr x Mt Mr x K K x K

diagonal

K x Mt AWGN Q transmitted pulses

Swerling case II target model

« Receive and Transmit steering matrices B and A are constant over the duration of Q 
pulses while the target reflection coefficients are varying independently from pulse to 
pulse».

Purpose: Localize the K targets
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Application 6:

Target localization in MIMO radars

Applications

« Beamforming-based approach »: Capon estimator  [Li and Stoica, 2006]

Find the (transmit,receive) angle pairs where the power         of the 
received  signal is maximum � Compute for all possible pairs

),( rtP θθ

« PARAFAC-based approach »: [Nion and Sidiropoulos, 2008]

The received data model follows a deterministic  PARAFAC model 

� Parametric model, find the angles from the PARAFAC decomposition

Qqqtqrq ,...,1,)()( =+Σ= ZABY θθ T
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Application 6:

Target localization in MIMO radars

Applications

« Beamforming-based approach »: [Li & Stoica]

),( rtP θθ

Problem: for closely spaced targets, neighboring peaks not 
distinguishable � detection and localization fails
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Application 6:

Target localization in MIMO radars
« PARAFAC-Based Localization of multiple targets in MIMO radars»          

[Nion & Sidiropoulos 2008]

Applications

All targets are detected and localized.



61

Application 6:

Target localization in MIMO radars

PARAFAC vs Capon

Applications
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Application 7:

Tracking the PARAFAC decomposition
« Adaptive algorithms to track the PARAFAC decomposition »                                    

[Nion & Sidiropoulos 2008]

Applications

( 1)t +A

( 1)t +YI

J+1
K

PARAFAC

( 1)t +B

( 1)t +C
I J+1

K

R R R

( )tA

( )tYI

J
K

PARAFAC

( )tB

( )tC
I J

K

R R R

Time

New Slice

LINK = ADAPTIVE ALGORITHMS 
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Application 7:

Tracking the PARAFAC decomposition
« Adaptive algorithms to track the PARAFAC decomposition »                                    

[Nion & Sidiropoulos 2008]

Applications

5 moving targets. Estimated trajectories. Comparison between Batch PARAFAC 
(applied repeatedly) and PARAFAC-RLST (« Recursive Least Squares Tracking »)

Example 1: MIMO radar
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Application 7:

Tracking the PARAFAC decomposition
« Adaptive algorithms to track the PARAFAC decomposition »                                    

[Nion & Sidiropoulos 2008]

Applications

Adaptive PARAFAC algorithms ~1000 times faster than  batch ALS

Example 1: MIMO radar
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Application 7:

Tracking the PARAFAC decomposition
« Adaptive algorithms to track the PARAFAC decomposition »                                    

[Nion & Sidiropoulos 2008]

Applications

Example 2: BSS
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Tensor tools more powerful than matrix tools:

- More appropriate to represent and process multivariate signals (one 
dimension=one variable)

- Uniqueness: estimate raw data and not subspaces only

ConclusionConclusionConclusionConclusion

Many applications:

- Source separation (telecom signals, speech signals, defects analysis, …)

- Multi-Way compression and analysis (Tensor faces)

- Chemometrics

Tensor tools useful both in deterministic and statist ical frameworks:

- Tensor models can represent the algebraic structure of multi-dimensional 
signals (e.g. CDMA signals received by multiple antennas, MIMO radars)

- Joint-Diagonalization is equivalent to symmetric  PARAFAC � enjoy the 
benefit of PARAFAC uniqueness (even in under-determined cases) + low 
complexity (dimension reduction)
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PerspectivesPerspectivesPerspectivesPerspectives

Towards Real-Time Tensor-Based applications:

- Adaptive PARAFAC algorithms very efficient (accurate and low complexity)

� On chip implementation? (e.g. real-time speech separation)

- Adaptive algorithms for Block Decompositions under development

Towards New Uniqueness Bounds

- Uniqueness bounds for Block Decomposition are sufficient � find more 
relaxed bounds

Towards New Applications

- New/ Emerging applications where multi-variate data have to be represented 
and processed.

- Existing applications where the tensor structure was ignored until now.

Towards New Tensor Tools

- Develop new tensor-based (application-specific) analysis tools


