Tensor Decompositions: Models, Applications, Algorithms, Uniqueness

Dimitri Nion
Post-Doc fellow, KU Leuven, Kortrijk, Belgium
E-mail: Dimitri.Nion@kuleuven-kortrijk.be
Homepage: http://perso-etis.ensea.fr/~nion/

I3S, Sophia-Antipolis, December 11th 2008
Preliminary

Tensor Decompositions
Q: What is this?
R: Powerful multi-linear algebra tools that generalize matrix decompositions.

Q: Where are they useful?
R: Increasing number of applications involve manipulation of multi-way data, rather than 2-way data.

Q: How powerful are they compared to matrix decompositions?
R: Uniqueness properties + Better exploitation of the multi-dimensional nature of data

Key research axes:
→ Development of new models/decompositions
→ Development of algorithms to compute decompositions
→ Uniqueness bounds of tensor decompositions
→ New applications, or existing applications where the multi-way nature of data was ignored until now
Roadmap

I. Introduction

II. A few Tensor Decompositions:
PARAFAC, HOSVD/Tucker, Block-Decompositions

III. Algorithms to compute Tensor Decompositions

IV. Applications

V. Conclusion and Future Research
I. Introduction

What is a tensor?

Tensor of order $N =$ Array with N dimensions

For $N>2$, « Higher-Order Tensors »

\[y \]
= 1st-order tensor

\[\mathbf{Y} \]
= 2nd-order tensor

\[\mathbf{Y} \]
= 3rd-order tensor
General motivation for using tensor signal representation and processing:

« If by nature, a signal is multi-dimensional, then its tensor representation allows to use multilinear algebra tools, which are more powerful than linear algebra tools. »

Many signals are tensors:

- (R,G,B) image can be represented as a tensor
- Video sequence is a tensor of consecutive frames
- Multi-variate signals, varying e.g. with time, temperature, illumination, sensor positions, etc...
Tensor models: an increasing number of applications

Various disciplines:

- Phonetics
- Psychometry
- Chemometrics (spectroscopy, chromatography)
- Image and video compression and analysis
- Scientific programming
- Sensor analysis
- Multi-Way Principal Component Analysis (PCA)
- Blind Source Separation and Independent Component Analysis (ICA)
- Telecommunications (wireless communications)
I. Introduction

Multi-Way Data

A set of K matrices of size IxJ

One matrix observed K times
(ex: K = time, K = number of sensors, etc)

→ 3-way tensor (« third-order tensor »)

Multiple variables → extension to N-way tensors

How to perform Multi-Way Analysis?

- Via tensor-algebra tools (=multilinear algebra tools)
- Matrix tools (SVD, EVD, QR, LU) have to be generalized

→ Tensor Decompositions
I. Introduction

Tensor Unfolding ("matricization")

\[
\begin{align*}
Y & = Y_{I \times K \times J} \\
Y_k & = Y_{I \times J} \\
Y_i & = Y_{J \times I} \\
Y_j & = Y_{K \times I}
\end{align*}
\]

Multi-Way Analysis?

- One can choose one matrix representation of \(Y \) and apply matrix tools (ex: matrix SVD for Principal Component Analysis (PCA))

- **Problem**: the multi-way structure is then ignored

- **Feature of N-way analysis**: exploit the N matrices simultaneously
Roadmap

I. Introduction

II. A few Tensor Decompositions: PARAFAC, HOSVD/Tucker, Block-Decompositions

III. Algorithms to compute Tensor Decompositions

IV. Applications

V. Conclusion and Future Research
Matrix Singular Value Decomposition (SVD)

\[Y = U S V^H \]

- \(U^H U = I \) and \(V^H V = I \) \(\rightarrow \) unitary matrices
- \(S = \text{diag}(\sigma_1, \ldots, \sigma_R) \) \(\rightarrow \) Singular values in decreasing order

If \(\text{rank}(Y) > R \), this truncated SVD is the best rank-\(R \) approx. of \(Y \)

In general a matrix factorization \(Y = UV^H \) is \textit{not} unique:

\[Y = UV^H = UPP^{-1}V^H \]

The SVD is unique because of unitary constraints on \(U \) and \(V \) and ordering constraint of the singular values in \(S \)
I. Tensor Decompositions

Tucker-3 Decomposition [Tucker 1966]

\[y_{ijk} = \sum_{l=1}^{L} \sum_{m=1}^{M} \sum_{n=1}^{N} a_{il} b_{jm} c_{kn} h_{lmn} \]

\[y = \mathcal{H} \times_1 A \times_2 B \times_3 C \]

- Tucker-3 = 3-way PCA. One unitary base \((A, B, C)\) per mode (Tucker-1, Tucker-2,…, Tucker-N are possible).

- If \(A, B, C\) are unitary matrices, TUCKER=HOSVD (« Higher Order Singular Value Decomposition »)

- \(\mathcal{H}\) is the representation of \(y\) in the reduced spaces.

- The number of principal components may be different in the three modes i.e. \(L \neq M \neq N\)

- \(\mathcal{H}\) is not diagonal (difference with matrix SVD).
I. Tensor Decompositions

Uniqueness of Tucker-3 Decomposition

- Tucker not unique: rotational freedom in each mode.
 → **A, B, C** are not unique (only subspace estimates).
The best rank-(L,M,N) approximation [De Lathauwer, 2000]

\[Y_1 = \text{truncated Matrix SVD of } Y \]

\[Y_1 = U S V^H \]

\[Y_1 \] is the best lower rank approximation of \(Y \) (in the Frobenius norm sense):

\[\text{Min } ||Y-Y_1||_F \]

s.t. \(Y_1 \) is rank-R

Question: Is the truncated HOSVD, the best rank-(L,M,N) approximation of \(\mathcal{Y} \)? **NO**

\[\text{Min } \left\| \mathcal{Y} - \mathcal{A} \mathcal{B}' \mathcal{C} \right\|_F \]

The truncated HOSVD is **only a good** rank-(L,M,N) approximation of \(\mathcal{Y} \).

To find the best one, one usually starts with the truncated HOSVD (initialization) and then alternate updates of the 3 subspace matrices \(\mathcal{A}, \mathcal{B} \) and \(\mathcal{C} \).
I. Tensor Decompositions

PARAFAC Decomposition [Harshman 1970]

\[Y = \sum_{r=1}^{R} a_r b_r c_r = \sum_{r=1}^{R} \mathbf{a}_r \mathbf{b}_r \mathbf{c}_r \]

Where:
- \(a_r \) is a vector
- \(b_r \) is a vector
- \(c_r \) is a vector
- \(\mathbf{a}_r \) is a matrix
- \(\mathbf{b}_r \) is a matrix
- \(\mathbf{c}_r \) is a matrix

\(\mathbf{C} \) is diagonal
- \(\mathbf{C}_{ij} = 1 \) if \(i=j=k \)
- \(\mathbf{C}_{ij} = 0 \) otherwise

\(\mathbf{Y} \) is set of \(K \) matrices of the form:

\[\mathbf{Y}(i;,j,k) = \mathbf{A} \text{diag}(\mathbf{C}(k;)) \mathbf{B}^T \]
Under mild conditions (next slide) PARAFAC is unique: only trivial ambiguities remain on \(A, B \) and \(C \) (permutation and scaling of columns).

PARAFAC decomposition gives the true matrices \(A, B \) and \(C \) (up to the trivial ambiguities) → this is a key feature compared to matrix SVD (which gives only subspaces)
I. Tensor Decompositions

Uniqueness of PARAFAC Decomposition (2)

Uniqueness condition [Kruskal, 1977]

\[k_A + k_B + k_C \geq 2R + 2 \]
(1)

\(k_A \) is the Kruskal-rank of \(A \)

Generically, \(k_A = \min(I,R) \)

\[\min(I,R) + \min(J,R) + \min(K,R) \geq 2(R+1) \]
(2)

Relating on (real and complex cases) on () so on ()

[De Lathauwer 2005]:

\[J \geq R \text{ et } \frac{I(I-1) + K(K-1)}{2} \geq \frac{R(R-1)}{2} \]
(3)
I. Tensor Decompositions

PARAFAC vs Tucker 3

PARAFAC

\[y_{ijk} = \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr} \]

\[\mathcal{H} \text{ is diagonal} \]

\[L=M=N \rightarrow A, B \text{ and } C \text{ have the same nb. of columns} \]

Unique (trivial ambiguities): Only arbitrary scaling and permutation remains.

TUCKER 3

\[y_{ijk} = \sum_{l=1}^{L} \sum_{m=1}^{M} \sum_{n=1}^{N} a_{il} b_{jm} c_{kn} h_{imn} \]

\[\mathcal{H} \text{ is not diagonal} \]

\[L\neq M\neq N \rightarrow A, B \text{ and } C \text{ do not necessarily have the same nb. of columns} \]

Not unique:
Rotational freedom still remains.
I. Tensor Decompositions

Block Component Decomposition in rank-(\(L_r, L_r, 1\)) terms

\[
Y = A_1^T B_1 + \ldots + A_R^T B_R
\]

- First generalization of PARAFAC in block terms [De Lathauwer, de Baynast, 2003] \(\rightarrow\) If \(L_r=1\) for all \(r\), then BCD-(\(L_r, L_r, 1\))=PARAFAC

- Unknown matrices:
 \[
 A = \begin{bmatrix}
 A_1 & \ldots & A_R
 \end{bmatrix}
 \quad
 B = \begin{bmatrix}
 B_1 & \ldots & B_R
 \end{bmatrix}
 \quad
 C = \begin{bmatrix}
 \vdots
 \end{bmatrix}
 \]

- BCD-(\(L_r, L_r, 1\)) is said unique if the only remaining ambiguities are:
 \(\rightarrow\) Arbitrary permutation of the blocks in \(A\) and \(B\) and of the columns of \(C\)
 \(\rightarrow\) Rotational freedom of each block (block-wise subspace estimation) + scaling ambiguity on the columns of \(C\)
I. Tensor Decompositions

Uniqueness of the BCD-(L,L,1) (i.e., $L_1=L_2=\ldots=L_R=L$)

<table>
<thead>
<tr>
<th>Sufficient bound 1</th>
<th>$LR \leq IJ$ and $\min\left(\frac{I}{L},R\right)+\min\left(\frac{J}{L},R\right)+\min(K,R) \geq 2(R+1)$ (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[De Lathauwer SIMAX 2008]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sufficient bound 2</th>
<th>$R \leq \min(IJ,K)$ and $C_i^{L+1} \cdot C_j^{L+1} \geq C_{R+L}^{L+1} - R$ (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Nion, PhD Thesis, 2007]</td>
<td></td>
</tr>
</tbody>
</table>

where $C_n^k = \frac{n!}{k!(n-k)!}$

Diagram:

- **bom 1, L=2**
- **bom 2, L=2**
- **bom 1, L=3**
- **bom 2, L=3**
- **bom 1, L=4**
- **bom 2, L=4**

- **R max**
- **I=J**
I. Tensor Decompositions

Block Component Decomposition in rank-\((L_r, M_r, N_r)\) terms

- Introduced by De Lathauwer in 2005
- **Very General framework** → generalization of PARAFAC, BCD-(\(L_r, L_r, 1\)) and Tucker/HOSVD
- Sum of \(R\) Tucker decompositions
- **Unknowns:**

 \[
 \begin{align*}
 A &= \begin{pmatrix} A_1 & \cdots & A_R \end{pmatrix} & B &= \begin{pmatrix} B_1 & \cdots & B_R \end{pmatrix} & C &= \begin{pmatrix} C_1 & \cdots & C_R \end{pmatrix} \\
 \end{align*}
 \]

 \[
 \begin{pmatrix} L_1 & L_R \end{pmatrix} & \begin{pmatrix} M_1 & M_R \end{pmatrix} & \begin{pmatrix} N_1 & N_R \end{pmatrix}
 \]

 \[
 \mathcal{H} = \begin{pmatrix} \mathcal{H}_1 & \cdots & \mathcal{H}_R \end{pmatrix}
 \]

- **Ambiguities:** same as Tucker model for each of the \(R\) components
I. Introduction

II. A few Tensor Decompositions: PARAFAC, HOSVD/Tucker, Block-Decompositions

III. Algorithms to compute Tensor Decompositions

IV. Applications

V. Conclusion and Future Research
Algorithms: basics

- Decompose \(\mathcal{Y} \) ↔ Estimate components \(A, B \) and \(C \)
- Minimization of the Frobenius norm of residuals

\[
\Phi = \left\| \mathcal{Y} - Tens(\hat{H}, \hat{S}, \hat{A}) \right\|_F^2 \quad \text{Tens = PARAFAC or BCD-(L,L,1) or BCD-(L,P,..)}
\]

Main idea: exploit the structure of the three matrix unfoldings simultaneously

\[
\begin{align*}
Y_{K \times J_1} &= C \cdot Z_1(B, A) \\
Y_{J_1 \times I_1} &= B \cdot Z_2(A, C) \\
Y_{I_1 \times K_1} &= A \cdot Z_3(C, B)
\end{align*}
\]

\[
\begin{align*}
\Phi &= \left\| Y_{K \times J_1} - C \cdot Z_1(B, A) \right\|_F^2 \\
\Phi &= \left\| Y_{J_1 \times I_1} - B \cdot Z_2(A, C) \right\|_F^2 \\
\Phi &= \left\| Y_{I_1 \times K_1} - A \cdot Z_3(C, B) \right\|_F^2
\end{align*}
\]

\(Z_1, Z_2 \) and \(Z_3 \) are built from 2 matrices only and their structure depends on the decomposition (PARAFAC, BCD-(L,L,1), etc)
ALS « Alternating Least Squares » algorithm

- **Principle:** Alternate updates of \(A = [A_1, \ldots, A_R], B = [B_1, \ldots, B_R] \) and \(C = [C_1, \ldots, C_R] \) in the Least Squares sense.

- Each update = minimization of the cost function w.r.t. one the 3 matrix unfoldings

Initialization: \(\hat{A}^{(0)}, \hat{B}^{(0)}, k = 1 \)

\[
\text{while } |\Phi^{(k-1)} - \Phi^{(k)}| > \epsilon \quad (\text{e.g. } \epsilon = 10^{-6})
\]

1. \(\hat{C}^{(k)} = Y_{K \times J_l} \cdot [Z_1(\hat{B}^{(k-1)}, \hat{A}^{(k-1)})]^\dagger \)

2. \(\hat{B}^{(k)} = Y_{J \times I_K} \cdot [Z_2(\hat{A}^{(k-1)}, \hat{C}^{(k)})]^\dagger \)

3. \(\hat{A}^{(k)} = Y_{I \times K_J} \cdot [Z_3(\hat{C}^{(k)}, \hat{B}^{(k)})]^\dagger \)

\(k \leftarrow k + 1 \)
ALS algorithm: problem of swamps

Long Swamps typically occur when:
- The loading matrices of the decomposition (i.e. the objective matrices) are ill-conditioned
- The updated matrices become ill-conditioned (impact of initialization)
- One of the R tensor-components in $\mathbf{Y} = \mathbf{Y}_1 + \ldots + \mathbf{Y}_R$ has a much higher norm than the R-1 others (e.g. « near-far » effect in telecommunications)

Observation:
ALS is fast in many problems, but sometimes, a long swamp is encountered before convergence.

27000 iterations!
Improvement 1 of ALS: Line Search

Purpose: reduce the length of swamps

Principle: for each iteration, interpolate A, B and C from their estimates of 2 previous iterations and use the interpolated matrices in input of

1. Line Search:
 \[
 \begin{align*}
 C^{(new)} &= C^{(k-2)} + \rho \left(C^{(k-1)} - C^{(k-2)} \right) \\
 B^{(new)} &= B^{(k-2)} + \rho \left(B^{(k-1)} - B^{(k-2)} \right) \\
 A^{(new)} &= A^{(k-2)} + \rho \left(A^{(k-1)} - A^{(k-2)} \right)
 \end{align*}
 \]

2. Then ALS update
 \[
 \begin{align*}
 \hat{C}^{(k)} &= Y_{K\times JI} \cdot \left[Z_1(\hat{B}^{(new)}, \hat{A}^{(new)}) \right]^+ \\
 \hat{B}^{(k)} &= Y_{J\times IK} \cdot \left[Z_2(\hat{A}^{(new)}, \hat{C}^{(k)}) \right]^+ \\
 \hat{A}^{(k)} &= Y_{I\times KJ} \cdot \left[Z_3(\hat{C}^{(k)}, \hat{B}^{(k)}) \right]^+
 \end{align*}
 \]

Choice of \(\rho \) crucial
\(\rho = 1 \) annihilates LS step (i.e. we get standard ALS)
Improvement 1 of ALS: Line Search

[Harshman, 1970] « LSH » Choose $\rho = 1.25$

[Bro, 1997] « LSB » Choose $\rho = k^{1/3}$ and validate LS step if decrease in Fit

[Rajih, Comon, 2005] « Enhanced Line Search (ELS) »

For REAL tensors $\Phi(A^{(new)}, S^{(new)}, H^{(new)}) = \Phi(\rho) = 6^{th}$ order polynomial.

Optimal ρ is the root that minimizes $\Phi(A^{(new)}, S^{(new)}, H^{(new)})$

[Nion, De Lathauwer, 2006]

« Enhanced Line Search with Complex Step (ELSCS) »

For complex tensors, look for optimal $\rho = m.e^{i\theta}$

We have $\Phi(A^{(new)}, S^{(new)}, H^{(new)}) = \Phi(m, \theta)$

Alternate update of m and θ:

- Update m : for θ fixed, $\frac{\partial \Phi(m, \theta)}{\partial m} = 5^{th}$ order polynomial in m
- Update θ : for m fixed, $\frac{\partial \Phi(m, \theta)}{\partial \theta} = 6^{th}$ order polynomial in $t = \tan\left(\frac{\theta}{2}\right)$
Improvement 1 of ALS: Line Search

«easy» problem

Line Search → Large reduction of the number of iterations at a very low additional complexity w.r.t. standard ALS

«difficult» problem

2000 iterations

27000 iterations
Improvement 2 of ALS: Compression

STEP 1:
Fit a Tucker Model on \mathcal{X}

STEP 2:
Fit the model on the small core tensor \mathcal{X} (compressed space)

STEP 3:
Come back to original space

➢ Compression \rightarrow Large reduction of the cost per iteration since the model is fitted in compressed space.
Improvement 3 of ALS: Good initialization

Comparison ALS and ALS+ELS, with three random initializations

Instead of using random initializations, could we use the observed tensor itself?
Improvement 3 of ALS: Good initialization

Slices Y_k (IxJ) of y:
\[
\begin{align*}
Y_1 &= H \cdot \Lambda_1 \cdot S^T \\
Y_2 &= H \cdot \Lambda_2 \cdot S^T \\
& \vdots \\
Y_k &= H \cdot \Lambda_k \cdot S^T
\end{align*}
\]
where the Λ_i are diagonal.

For PARAFAC: if $R \leq \min(I, J)$, the slices Y_k are generically rank-R.

For any pair (k_1, k_2):
\[
Y_{k_1} \cdot (Y_{k_2})^\dagger = H \cdot (\Lambda_{k_1} \cdot \Lambda_{k_2}^{-1}) \cdot H^\dagger
\]

Estimate $\hat{H}^{(0)}$ as the R principal eigenvectors. Then deduce $\hat{S}^{(0)}$ and $\hat{A}^{(0)}$.

→ Called Direct Trilinear Decomposition (DTLD)
→ If no noise, the model is exact DTLD gives the exact solution.
→ If noise is present, DTLD gives a good initialization.
→ The same holds for Block Component Decompositions (via generalization of DTLD).
→ To keep in mind: can only be used if at least 2 dimensions are long enough (For PARAFAC: $R \leq \min(I, J)$.)
Improvement 3 of ALS: Good initialization

Simulations with BCD-(L,L,1), I=8, J=100, K=8, L=2, R=4

One random initialization

One initialization via DTLD

→ If dimensions allow it, use the DTLD-initialization + only 2 or 3 random initializations

→ Else, use e.g., 10 random initializations

→ It does not make sense to draw general conclusions on the average performance (e.g. BER curves with Monte Carlo runs) with only one initialization.
Concluding remarks on algorithms

→ Standard ALS sometimes slow (swamps)

→ ALS+ELS (sometimes drastically) reduces swamp length at low additional complexity

→ Other algorithms: e.g. Levenberg-Marquardt → convergence very fast, not very sensitive to ill-conditioned data, but higher complexity and memory (dimensions of Jacobian matrix=IJK)

→ Important practical considerations:
 - Dimensionality reduction pre-processing step (via Tucker/HOSVD)
 - Initialization via DTLD if possible

→ Algorithms have to be adapted to include constraints specific to applications:
 - preservation of specific matrix-structures (Toeplitz, Van der Monde, etc)
 - Constant Modulus, Finite Alphabet, …
 - non-negativity constraints (e.g. Chemometrics applications)
Roadmap

I. Introduction

II. A few Tensor Decompositions: PARAFAC, HOSVD/Tucker, Block-Decompositions

III. Algorithms to compute Tensor Decompositions

IV. Applications

V. Conclusion and Future Research
Applications

Application 1: Tensor Faces & Face Recognition
[Vasilescu & Terzopoulos, 2003]

Learning Database:
- 28 People
- 3 Expressions
- 5 Viewpoints
- 3 Illuminations
- 45 images per person
- 7943 pixels per image

Objective: associate input image (7943x1) to one of the 28 people
Applications

Application 1: Tensor Faces & Face Recognition
[Vasilescu & Terzopoulos, 2003]

Standard approach: 2-Way PCA

1260 (28x3x5x3) pixels

\[\begin{pmatrix} Y \\ \Sigma_1 \\ U_{\text{people}} \end{pmatrix} = \text{SVD} \]

\[U_{\text{pixel}} (7943 \times 1260) \]
spans the space of images

\[\rightarrow \text{1 image represented by one vector of 1260 coefficients in } V \]

\[\rightarrow \text{1 person represented by a set of 45 vectors in } V \]

Input Image \(d \) (7943x1)

1) Projection of \(d \) in the space of PCA coefficients: \(c = U^H_{\text{pixel}} d \) (1260x1)

2) \(\min_i ||c - v_i|| \) to associate score vector \(c \) to one person
Application 1: Tensor Faces & Face Recognition

[Vasilescu & Terzopoulos, 2003]

1260 (28x3x5x3) → N-Way PCA

7943 pixels → tensor \(\mathcal{Y} \) (7943x5x3x3x28)

\[\mathcal{Y} = \mathcal{K} \times_1 U_{\text{pixels}} \times_2 U_{\text{views}} \times_3 U_{\text{illums}} \times_4 U_{\text{express}} \times_5 U_{\text{people}} \]

- \(U_{\text{pixels}} \) (7943x7943) spans the space of images
- \(U_{\text{views}} \) (5x5) spans the space of viewpoint parameters
- \(U_{\text{illums}} \) (3x3) spans the space of illumination parameters
- \(U_{\text{express}} \) (3x3) spans the space of expression parameters
- \(U_{\text{people}} \) (28x28) spans the space of people parameters

\(\mathcal{K} \) describes how the different modes interact

→ Compression flexibility: greater control than 2-Way PCA (truncation of the different bases independently)
Application 1: Tensor Faces & Face Recognition
[Vasilescu & Terzopoulos, 2003]

1) For all triplets (view,illums,express), build the basis $B_{v,i,e}$ (7943x28) and project unknown image $c = B_{v,i,e} d$

2) Compare the 28x1 score vector c to the loadings in U_{people}

$$\min_i ||c-u_i||$$

to associate the input image d to one of the 28 persons

Performance comparison (recognition rate):

2-Way PCA 27%
5-Way PCA: 88%
Application 2: Chemometrics - Analysis of fluorescence data via PARAFAC [R. Bro, 1997]

<table>
<thead>
<tr>
<th>Data set:</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ 2 chemical samples, each containing different and unknown concentrations of 3 unknown chemical components.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Find which chemical components are present in the samples</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method: fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Excitation of the samples with 51 wavelengths (250-300nm)</td>
</tr>
<tr>
<td>→ Measure of the intensity of emission over 201 wavelengths (250-450nm)</td>
</tr>
</tbody>
</table>
Applications

Application 2: Chemometrics - Analysis of fluorescence data via PARAFAC [R. Bro, 1997]

Data cube \mathbf{Y} (51x201x2): holds the whole set of measured intensities, for the two samples

Fit PARAFAC model with $R=3$ components

Identification of 3 chemical components with only 2 samples

→ thanks to uniqueness of PARAFAC decomposition
Applications

Estimated emission spectrum

True excitation spectrum

Results from paper « PARAFAC: tutorial and applications », by Rasmus Bro, 1997
CDMA (« Code Division Multiple Access »)

→ Used in 3rd generation standard (UMTS)

→ Allows users to communicate *simultaneously* in the *same bandwidth*

User 1 wants to transmit $s_1 = [1 \ -1 \ -1]$.

→ CDMA code allocated to user 1: $c_1 = [1 \ -1 \ 1 \ -1]$.

→ User 1 transmits $[+ c_1 \ - c_1 \ - c_1]$.

→ User 2 transmits his symbols spread by his own CDMA code c_2 orthogonal to c_1, etc
Decompose \mathcal{Y} to blindly estimate the transmitted symbols.

Which decomposition to use? → the one that best reflects the algebraic structure of the data.
Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

Case 1: single path propagation (no inter-symbol-interference)

\[\mathbf{y} = \mathbf{a}_1 \mathbf{c}_1 + \ldots + \mathbf{a}_R \mathbf{c}_R \]

- \(I \) = length of the CDMA codes
- \(J \) = number of symbols
- \(K \) = number of antennas at the receiver

« Blind » receiver: uniqueness of PARAFAC does not require prior knowledge of the CDMA codes, neither of pilot sequences to blindly estimate the symbols of all users.

[Sidiropoulos et al., 2001]
Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

Case 2: Multi-path propagation with inter-symbol-interference but far-field reflections only [De Lathauwer & de Baynast 2003]

\[H_r \rightarrow \text{Channel matrix (channel impulse response convolved with CDMA code)} \]
\[S_r \rightarrow \text{Symbol matrix, holds the J symbols of interest for user r} \]
\[a_r \rightarrow \text{Response of the K antennas to the angle of arrival (steering vector)} \]
Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

Case 3: Multi-path propagation with inter-symbol-interference but reflections not only in the far field [Nion & De Lathauwer 2006]

\[\mathbf{Y} = \sum_{r=1}^{R} \mathbf{H}_r \]

\(\mathbf{H}_r \) → Channel matrix (channel impulse response convolved with CDMA code)

\(\mathbf{S}_r \) → Symbol matrix, holds the J symbols of interest for user r

\(\mathbf{A}_r \) → Response of the K antennas to the angles of arrival (steering vectors)
Applications

Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

BCD-(L,P,.) with I=12, J=100, L=2, P=2 and 10 random initializations.

K=4 antennas and R=5 users

K=6 antennas and R=3 users
Application 4:

Blind Source Separation (instantaneous mixtures)

Goal: estimate the I unknown sources s_1, \ldots, s_I, from the J recordings m_1, \ldots, m_J only. (« blind source separation (BSS) »)
Application 4:

Blind Source Separation (instantaneous mixtures)

Data Model for linear instantaneous mixtures:

![Diagram showing the data model with N samples, J signals, observed matrix Y, mixing matrix H, and source matrix S.]

Issues:

→ How to find H and S?

→ What happens if we have more sources than sensors ($I > J$) (« under-determined case ») H is fat so not left-pseudo invertible.

→ What about convolutive mixtures (to take reverberations on walls into account)?
Matrix factorization not unique:

\[
\begin{bmatrix}
N \\
J
\end{bmatrix}
Y
=
\begin{bmatrix}
J \\
I
\end{bmatrix}
H
P
P^{-1}
\begin{bmatrix}
N \\
I
\end{bmatrix}
S
\]

The SVD of \(Y \) would give us the subspaces that generate \(H \) and \(S \), but not \(H \) and \(S \) themselves \(\rightarrow \text{We need more assumptions!} \)

Assumption: The I sources are statistically independent

« Independent Component Analysis » (ICA), [Comon, 1994].

\[\longrightarrow\text{Find } H \text{ that makes the source estimates as much independent as possible.}\]

\[\longrightarrow\text{Use of Second-Order or Higher-Order Statistics (SOS or HOS)}\]

+ Application-specific assumptions to reduce the ambiguity:

- Matrix-Structures (Toeplitz, Van Der Monde,…)
- Finite Alphabet (Symbol constellation), Constant Modulus, etc
Applications

Application 4:

Blind Source Separation (instantaneous mixtures)

« Second-Order-Blind-Identification » (SOBI) [Belouchrani et al. 1997]

\[
C_k = E[y_t y_{t-\tau_k}^H] = HE[s_t s_{t-\tau_k}^H]H^H = HD_k H^H
\]

K delays \(\rightarrow\) K covariance matrices

\[
\begin{align*}
C_1 &= HD_1 H^H \\
\vdots &= \vdots \\
C_K &= HD_K H^H
\end{align*}
\]

Use existing algorithms for **Joint Diagonalization** of a set of matrices to find \(H\)

SOBI relies on simultaneous diagonalization algorithms \(\rightarrow\) does not work in under-determined cases (i.e., when \(H\) is fat)
Blind Source Separation (instantaneous mixtures)

« Second-Order-Blind-Identification of Under-determined mixtures » (SOBIUM)
[Castaing & De Lathauwer 2006]

\[
\begin{align*}
C_1 &= HD_1H^H \\
\vdots &= \vdots \\
C_K &= HD_KH^H
\end{align*}
\]

\(C = JDH^H\) Symmetric PARAFAC!

→ Lower complexity than SOBI: Tucker compression in mode 3 before fitting the PARAFAC model (K reduced to I) to find \(H\)

→ Works for under-determined cases (uniqueness of PARAFAC):

<table>
<thead>
<tr>
<th>J</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{max}})</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>26</td>
</tr>
</tbody>
</table>
Application 5:

Blind Source Separation (convolutive mixtures)

\[Y = HS \rightarrow \text{instantaneous mixtures} \]

Multiple reverberations on the walls \(\rightarrow\) separation of convolutive mixture

\[
y(t) = H \ast s(t) = \sum_{l=0}^{L-1} H(l) \ s(t - l)
\]

DFT

\[
y(f, t) = H(f) \ s(f, t), \quad f = 1, \ldots, F
\]

Solve one instantaneous ICA problem for each frequency \(\rightarrow\) apply existing ICA techniques for instantaneous mixtures
Application 5:

Blind Source Separation (convolutive mixtures)

\[y(f, t) = H(f) s(f, t), \]
\[f = 1, ..., F \]

Compute the F decompositions and collect \(\{H(1), H(2), ..., H(F)\} \)

As before, works in under-determined cases

After separation stage, the job is really complete after solving:

\[s(f, t) = H^\dagger(f)y(f, t) \]

\[\rightarrow \text{arbitrary scaling and permutation of columns of } H(f) \text{ at each frequency} \]

\[\rightarrow \text{Under-determined cases: we can not compute } s(f, t) = H^\dagger(f)y(f, t) \]
Application 5:

Blind Source Separation (convolutive mixtures)

« PARAFAC-Based Separation of convolutive speech mixtures »
[Nion, Mokios, Sidiropoulos & Potamianos 2008]

Applications

Example 1:
I=4 speech signals,
J=8 microphones

\[\hat{S}_1 \quad \hat{S}_2 \quad \hat{S}_3 \quad \hat{S}_4 \]

Room Impulse Response (T_{60}=200 ms)

Application 5:

Blind Source Separation (convolutive mixtures)

« PARAFAC-Based Separation of convolutive speech mixtures »
[Nion, Mokios, Sidiropoulos & Potamianos 2008]

AUDIO DEMO: http://www.telecom.tuc.gr/~nikos/BSS_Nikos.html

Example 2:
I=3 music signals,
J=8 microphones

\[\hat{S}_1 \hat{S}_2 \hat{S}_3 \]

Room Impulse Response (T\(_{60}\)=200 ms)
MIMO radar = emerging technology.

Principle: send orthogonal waveforms from different antennas, and capture the waveforms reflected by the targets from different receive antennas.

Two classes of MIMO radars: « Widely separated antennas » and « Closely spaced antennas »

Exploitation of spatial diversities yields better performance (in terms of target localization, false alarm rate, …) compared to mono-antenna.
Applications

Application 6:

Target localization in MIMO radars

Data Model (after matched filtering by orthogonal transmitted pulses):

\[Y_q = B(\theta_r) \sum_q A^T(\theta_t) + Z_q, \quad q = 1, \ldots, Q \]

\[\begin{array}{cccc}
M_t \times M_t & M_r \times K & K \times K & K \times M_t \\
\text{diagonal} & & & \text{AWGN}
\end{array} \]

\text{Q transmitted pulses}

Swerling case II target model

« Receive and Transmit steering matrices \(B \) and \(A \) are constant over the duration of \(Q \) pulses while the target reflection coefficients are varying independently from pulse to pulse ».

Purpose: Localize the \(K \) targets
Applications

Application 6:

Target localization in MIMO radars

\[Y_q = B(\theta_r) \Sigma_q A^T(\theta_t) + Z_q, \quad q = 1, \ldots, Q \]

« Beamforming-based approach »: Capon estimator [Li and Stoica, 2006]

Find the (transmit, receive) angle pairs where the power \(P(\theta_t, \theta_r) \) of the received signal is maximum → Compute for all possible pairs

« PARAFAC-based approach »: [Nion and Sidiropoulos, 2008]

The received data model follows a deterministic PARAFAC model → Parametric model, find the angles from the PARAFAC decomposition
Applications

Application 6:

Target localization in MIMO radars

« Beamforming-based approach »:

\[P(\theta_t, \theta_r) \]

Problem: for closely spaced targets, neighboring peaks not distinguishable → detection and localization fails
Application 6:

Target localization in MIMO radars

« PARAFAC-Based Localization of multiple targets in MIMO radars »
[Nion & Sidiropoulos 2008]

All targets are detected and localized.
Applications

Application 6:

Target localization in MIMO radars

PARAFAC vs Capon

- Q=200 pulses
- Target 1: (-10°, -20°)
- Target 2: (-14°, -24°)

Graph showing the comparison between PARAFAC and Capon methods with different antenna configurations (M_t=M_r=2, 6, 8) and varying SNR (dB).
Application 7:

Tracking the PARAFAC decomposition

« Adaptive algorithms to track the PARAFAC decomposition »

[Nion & Sidiropoulos 2008]

Time

New Slice

LINK = ADAPTIVE ALGORITHMS
Applications

Application 7:

Tracking the PARAFAC decomposition

« Adaptive algorithms to track the PARAFAC decomposition »

[Nion & Sidiropoulos 2008]

Example 1: MIMO radar

5 moving targets. Estimated trajectories. Comparison between Batch PARAFAC (applied repeatedly) and PARAFAC-RLST (« Recursive Least Squares Tracking »)
Application 7: Tracking the PARAFAC decomposition

« Adaptive algorithms to track the PARAFAC decomposition »

[Nion & Sidiropoulos 2008]

Example 1: MIMO radar

Adaptive PARAFAC algorithms ~1000 times faster than batch ALS
Applications

Application 7:

Tracking the PARAFAC decomposition

« Adaptive algorithms to track the PARAFAC decomposition »

[Nion & Sidiropoulos 2008]

Example 2: BSS

![Graph showing SIR (signal-to-interference ratio) over duration of recording.]

- S1 is instantaneously moved from 90° to 135° while S2 is fixed.
- Seq. 1: Initialization
- Seq. 2: PARAFAC-RLST S1 at 90°, S2 at 0°
- Seq. 3: PARAFAC-RLST S1 at 135°, S2 at 0°
Conclusion

Tensor tools more powerful than matrix tools:
- More appropriate to represent and process multivariate signals (one dimension=one variable)
- Uniqueness: estimate raw data and not subspaces only

Tensor tools useful both in deterministic and statistical frameworks:
- Tensor models can represent the algebraic structure of multi-dimensional signals (e.g. CDMA signals received by multiple antennas, MIMO radars)
- Joint-Diagonalization is equivalent to symmetric PARAFAC \rightarrow enjoy the benefit of PARAFAC uniqueness (even in under-determined cases) + low complexity (dimension reduction)

Many applications:
- Source separation (telecom signals, speech signals, defects analysis, …)
- Multi-Way compression and analysis (Tensor faces)
- Chemometrics
Perspectives

Towards Real-Time Tensor-Based applications:
- Adaptive PARAFAC algorithms very efficient (accurate and low complexity)
 → On chip implementation? (e.g. real-time speech separation)
- Adaptive algorithms for Block Decompositions under development

Towards New Uniqueness Bounds
- Uniqueness bounds for Block Decomposition are sufficient → find more relaxed bounds

Towards New Tensor Tools
- Develop new tensor-based (application-specific) analysis tools

Towards New Applications
- New/Emerging applications where multi-variate data have to be represented and processed.
- Existing applications where the tensor structure was ignored until now.