

Technical University of Crete Department of Electronic and Computer Engineering

Tensor Decompositions: Models, Applications, Algorithms, Uniqueness

Dimitri Nion

Post-Doc fellow, KU Leuven,

Kortrijk, Belgium

E-mail: Dimitri.Nion@kuleuven-kortrijk.be

Homepage: http://perso-etis.ensea.fr/~nion/

I3S, Sophia-Antipolis, December 11th 2008

Preliminary

Tensor Decompositions

Q: What is this ?

R: Powerful **multi-linear algebra** tools that generalize matrix decompositions.

Q: Where are they useful ?

R: Increasing number of applications involve manipulation of multi-way data, rather than 2-way data.

Q: How powerful are they compared to matrix decompositions? R: Uniqueness properties + Better exploitation of the multidimensional nature of data

Key research axes:

- → Development of new models/decompositions
- → Development of algorithms to compute decompositions
- → Uniqueness bounds of tensor decompositions
- → New applications, or existing applications where the multiway nature of data was ignored until now 2

Roadmap

- I. Introduction
- II. A few Tensor Decompositions: PARAFAC, HOSVD/Tucker, Block-Decompositions
- III. Algorithms to compute Tensor Decompositions
- IV. Applications
- V. Conclusion and Future Research

I. Introduction

What is a tensor ?

Tensor of order N = Array with N dimensions

For N>2, « Higher-Order Tensors »

= 3rd-order tensor

I. Introduction
Multi-Way Processing, why?

General motivation for using tensor signal representation and processing :

« If by nature, a signal is multi-dimensional, then its tensor representation allows to use multilinear algebra tools, which are more powerful than linear algebra tools. »

Many signals are tensors :

- (R,G,B) image can be represented as a tensor
- Video sequence is a tensor of consecutive frames

- Multi-variate signals, varying e.g. with time, temperature, illumination, sensor positions, etc...

I Introduction

Tensor models: an increasing number of applications

Various disciplines:

- Phonetics
- Psychometry
- Chemometrics (spectroscopy, chromatography)
- Image and video compression and analysis
- Scientific programming
- Sensor analysis
- Multi-Way Principal Component Analysis (PCA)
- Blind Source Separation and Independent Component Analysis (ICA)
- Telecommunications (wireless communications)

I. Introduction

Multi-Way Data

Multiple variables \rightarrow extension to N-way tensors

How to perform Multi-Way Analysis?

- Via tensor-algebra tools (=multilinear algebra tools)
- Matrix tools (SVD, EVD, QR, LU) have to be generalized

→Tensor Decompositions

I. Introduction

Tensor Unfolding ("matricization")

Multi-Way Analysis?

- One can choose one matrix representation of \mathcal{Y} and apply matrix tools (ex: matrix SVD for Principal Component Analysis (PCA))
- Problem: the multi-way structure is then ignored
- Feature of N-way analysis: exploit the N matrices simultaneously

Roadmap

I. Introduction

- II. A few Tensor Decompositions: PARAFAC, HOSVD/Tucker, Block-Decompositions
- III. Algorithms to compute Tensor Decompositions
- IV. Applications
- V. Conclusion and Future Research

Matrix Singular Value Decomposition (SVD)

$$\begin{cases} \mathbf{U}^{H}\mathbf{U} = \mathbf{I} \text{ and } \mathbf{V}^{H}\mathbf{V} = \mathbf{I} \rightarrow \text{unitary matrices} \\ \mathbf{S} = diag(\sigma_{1}, ..., \sigma_{R}) \rightarrow \text{Singular values in decreasing order} \end{cases}$$

If *rank*(**Y**)>R, this truncated SVD is the best rank-R approx. of **Y**

In general a matrix factorization **Y**=**UV**^H is *not* unique:

Y=UV^H=UPP⁻¹V^H

The SVD is unique because of unitary constraints on **U** and **V** and ordering constraint of the singular values in **S**

Tucker-3 Decomposition [Tucker 1966]

Tucker-3 = 3-way PCA. One unitary base (A, B, C) per mode (Tucker-1, Tucker-2,..., Tucker-N are possible).

 If A, B, C are unitary matrices, TUCKER=HOSVD (« Higher Order Singular Value Decomposition »)

• \Re is the representation of \Im in the reduced spaces.

• The number of principal components may be different in the three modes i.e. $L \neq M \neq N$

• *It* is not diagonal (difference with matrix SVD).

Uniqueness of Tucker-3 Decomposition

Tucker not unique: rotational freedom in each mode.

 \rightarrow A, B, C are not unique (only subspace estimates).

The best rank-(L,M,N) approximation [De Lathauwer, 2000]

Question: Is the truncated HOSVD, the best rank-(L,M,N) approximation of y ? NO

The truncated HOSVD is only a good rank-(L,M,N) approximation of \mathcal{Y} .

To find the best one, one usually starts with the truncated HOSVD (initialization) and then alternate updates of the 3 subspace matrices **A**, **B** and **C**.

PARAFAC Decomposition [Harshman 1970]

Uniqueness of PARAFAC Decomposition (1)

Under mild conditons (next slide) PARAFAC is unique: only trivial ambiguities remain on A, B and C (permutation and scaling of columns).

■ PARAFAC decomposition gives the true matrices A, B and C (up to the trivial ambiguities) → this is a key feature compared to matrix SVD (which gives only subspaces)

Uniqueness of PARAFAC Decomposition (2)

PARAFAC vs Tucker 3

$$PARAFAC$$

$$y_{ijk} = \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr}$$

 ${\mathfrak K}$ is diagonal

L=M=N \rightarrow A, B and C have the same nb. of columns

Unique (trivial ambiguities): Only arbitrary scaling and permutation remains .

$$y_{ijk} = \sum_{l=1}^{L} \sum_{m=1}^{M} \sum_{n=1}^{N} a_{il} b_{jm} c_{kn} h_{lmn}$$

 \mathfrak{K} is not diagonal

 $L \neq M \neq N \rightarrow A$, B and C do not necessarily have the same nb. of columns

Not unique: Rotational freedom still remains.

Block Component Decomposition in rank-(L_r,L_r,1) terms

• First generalization of PARAFAC in block terms [De Lathauwer, de Baynast, 2003] \rightarrow If L_r=1 for all r, then BCD-(L_r,L_r,1)=PARAFAC

• Unknown matrices:
$$\mathbf{A} = \begin{bmatrix} \mathbf{L}_1 & \mathbf{L}_R \\ \mathbf{A}_1 & \cdots & \mathbf{A}_R \end{bmatrix} \mathbf{I} \quad \mathbf{B} = \begin{bmatrix} \mathbf{L}_1 & \mathbf{L}_R \\ \mathbf{B}_1 & \cdots & \mathbf{B}_R \end{bmatrix} \mathbf{J} \quad \mathbf{C} = \begin{bmatrix} | \cdots | \\ \mathbf{c}_1 & \mathbf{c}_R \end{bmatrix} \mathbf{K}$$

- BCD-(L_r,L_r,1) is said unique if the only remaining ambiguities are:
- \rightarrow Arbitrary permutation of the blocks in A and B and of the columns of C
- → Rotational freedom of each block (block-wise subspace estimation) + scaling ambiguity on the columns of C
 18

Uniqueness of the BCD-(L,L,1) (i.e., $L_1=L_2=...=L_R=L$)

19

Block Component Decomposition in rank-(L_r,M_r,N_r) terms

- Introduced by De Lathauwer in 2005
- Very General framework \rightarrow generalization of PARAFAC, BCD-(L_r,L_r,1) and Tucker/HOSVD

Sum of R Tucker decompositions

• Ambiguities: same as Tucker model for each of the R components

Roadmap

I. Introduction

II. A few Tensor Decompositions: PARAFAC, HOSVD/Tucker, Block-Decompositions

III. Algorithms to compute Tensor Decompositions

- IV. Applications
- V. Conclusion and Future Research

Algorithms : basics

> Decompose $y \iff$ Estimate components A, B and C

Minimization of the Frobenius norm of residuals

 $\Phi = \left\| \mathcal{Y} - Tens(\hat{\mathbf{H}}, \hat{\mathbf{S}}, \hat{\mathbf{A}}) \right\|_{F}^{2} \qquad Tens = \mathsf{PARAFAC} \text{ or BCD-(L,L,1) or BCD-(L,P,.)}$

Main idea: exploit the structure of the three matrix unfoldings simultanesouly

 Z_1 , Z_2 and Z_3 are built from 2 matrices only and their structure depends on the decomposition (PARAFAC, BCD-(L,L,1), etc)

ALS « Alternating Least Squares » algorithm

> <u>Principle</u>: Alternate updates of $A=[A_1,...,A_R]$, $B=[B_1,...,B_R]$ and $C=[C_1,...,C_R]$ in the Least Squares sense.

Each update = minimization of the cost function w.r.t. one the 3 matrix unfoldings

ALS algorithm: problem of swamps

Long Swamps typically occur when:

- The loading matrices of the decomposition (i.e. the objective matrices) are ill-conditioned

-The updated matrices become ill-conditionned (impact of initialization)

- One of the R tensor-components in $y = y_1 + ... + y_R$ has a much higher norm than the R-1 others (e.g. « near-far » effect in telecommunications)

Improvement 1 of ALS: Line Search

Purpose: reduce the length of swamps

<u>Principle:</u> for each iteration, interpolate A, B and C from their estimates of 2 previous iterations and use the interpolated matrices in input of

Improvement 1 of ALS: Line Search

[Harshman, 1970] « LSH » Choose $\rho = 1.25$

[Bro, 1997] « LSB » Choose $\rho = k^{1/3}$ and validate LS step if decrease in Fit

[Rajih, Comon, 2005] « Enhanced Line Search (ELS) »

For REAL tensors $\Phi(\mathbf{A}^{(new)}, \mathbf{S}^{(new)}, \mathbf{H}^{(new)}) = \Phi(\rho) = 6^{th}$ order polynomial. Optimal ρ is the root that minimizes $\Phi(\mathbf{A}^{(new)}, \mathbf{S}^{(new)}, \mathbf{H}^{(new)})$

[Nion, De Lathauwer, 2006]

«Enhanced Line Search with Complex Step (ELSCS) »

For complex tensors, look for optimal $\rho = m.e^{i\theta}$ We have $\Phi(\mathbf{A}^{(new)}, \mathbf{S}^{(new)}, \mathbf{H}^{(new)}) = \Phi(m, \theta)$

Alternate update of m and θ :

→ Update *m* : for
$$\theta$$
 fixed, $\frac{\partial \Phi(m, \theta)}{\partial m} = 5^{\text{th}}$ order polynomial in *m*

- Update
$$\theta$$
: for *m* fixed, $\frac{\partial \Phi(m, \theta)}{\partial \theta} = 6^{\text{th}}$ order polynomial in $t = \tan(\frac{\theta}{2})$

→ Line Search → Large reduction of the number of iterations at a very low additional complexity w.r.t. standard ALS 27

Improvement 2 of ALS: Compression

> Compression → Large reduction of the cost per iteration since the model is fitted in compressed space. 28

Improvement 3 of ALS: Good initialization

Comparison ALS and ALS+ELS, with three random initializations

Instead of using random initializations, could we use the observed tensor itself ?

Improvement 3 of ALS: Good initialization

Slices
$$\mathbf{Y}_{k}$$
 (IxJ) of \mathfrak{Y} :

$$\begin{cases}
\mathbf{Y}_{1} = \mathbf{H} \cdot \boldsymbol{\Lambda}_{1} \cdot \mathbf{S}^{T} \\
\mathbf{Y}_{2} = \mathbf{H} \cdot \boldsymbol{\Lambda}_{2} \cdot \mathbf{S}^{T} \\
\vdots \\
\mathbf{Y}_{K} = \mathbf{H} \cdot \boldsymbol{\Lambda}_{K} \cdot \mathbf{S}^{T}
\end{cases}$$
, where the $\boldsymbol{\Lambda}_{i}$ are diagonal

For PARAFAC: if $R \leq \min(I, J)$, the slices \mathbf{Y}_k are generically rank-R For any pair $(\mathbf{k}_1, \mathbf{k}_2)$: $\mathbf{Y}_{k_1} \cdot (\mathbf{Y}_{k_2})^{\dagger} = \mathbf{H} \cdot (\Lambda_{k_1} \cdot \Lambda_{k_2}^{-1}) \cdot \mathbf{H}^{\dagger}$ Estimate $\hat{\mathbf{H}}^{(0)}$ as the R principal eigenvectors. Then deduce $\hat{\mathbf{S}}^{(0)}$ and $\hat{\mathbf{A}}^{(0)}$

→ Called Direct Trilinear Decomposition (DTLD)

 \rightarrow If no noise, the model is exact DTLD gives the exact solution.

 \rightarrow If noise is present, DTLD gives a good initialization

→ The same holds for Block Component Decompositions (via generalization of DTLD)

→ <u>To keep in mind</u>: can only be used if at least 2 dimensions are long enough (For PARAFAC: $R \le \min(I, J)$)

30

Improvement 3 of ALS: Good initialization

Simulations with BCD-(L,L,1), I=8, J=100, K=8, L=2, R=4

 \rightarrow If dimensions allow it, use the DTLD-initialization + only 2 or 3 random initializations

 \rightarrow Else, use e.g., 10 random initializations

 \rightarrow It does not make sense to draw general conclusions on the average performance (e.g. BER curves with Monte Carlo runs) with only one initialization.

→ Standard ALS sometimes slow (swamps)

→ ALS+ELS (sometimes drastically) reduces swamp length at low additional complexity

 \rightarrow Other algorithms: e.g. Levenberg-Marquardt \rightarrow convergence very fast, not very sensitive to ill-conditioned data, but higher complexity and memory (dimensions of Jacobian matrix=IJK)

- → Important practical considerations:
 - Dimensionality reduction pre-processing step (via Tucker/HOSVD)
 - Initialization via DTLD if possible
- \rightarrow Algorithms have to be adapted to include constraints specific to applications:
 - preservation of specific matrix-structures (Toeplitz, Van der Monde, etc)
 - Constant Modulus, Finite Alphabet, ...
 - non-negativity constraints (e.g. Chemometrics applications)

Roadmap

I. Introduction

- II. A few Tensor Decompositions: PARAFAC, HOSVD/Tucker, Block-Decompositions
- III. Algorithms to compute Tensor Decompositions

IV. Applications

V. Conclusion and Future Research

Applications

Application 1: Tensor Faces & Face Recognition [Vasilescu & Terzopoulos, 2003]

Objective: associate input image (7943x1) to one of the 28 people

Applications

Application 1: Tensor Faces & Face Recognition [Vasilescu & Terzopoulos, 2003]

 \rightarrow 1 image represented by one vector of 1260 coefficients in V

 \rightarrow 1 person represented by a set of 45 vectors in V

Input Image d (7943x1)

- 1) Projection of **d** in the space of PCA coefficients: $\mathbf{c} = \mathbf{U}_{\text{pixel}}^{\text{H}}\mathbf{d}$ (1260x1)
- 2) $\min_{i} ||\mathbf{c} \mathbf{v}_{i}||$ to associate score vector **c** to one person

Applications

Application 1: Tensor Faces & Face Recognition [Vasilescu & Terzopoulos, 2003]

 \rightarrow \Re describes how the different modes interact

→Compression flexibility: greater control than 2-Way PCA (truncation of the different bases independently)

Application 1: Tensor Faces & Face Recognition [Vasilescu & Terzopoulos, 2003]

N-Way PCA

28

7943x5x3x3x28

1) For all triplets (view,illums,express), build the basis $\mathbf{B}_{v,i,e}$ (7943x28) and project unknown image $\mathbf{c} = \mathbf{B}_{vie}^{+} \mathbf{d}$

2) Compare the 28x1 score vector **c** to the loadings in **U**_{people}

 $\min_i ||\mathbf{c} - \mathbf{u}_i||$

to associate the input image d to one of the 28 persons

Performance comparison (recognition rate):

2-Way PCA 27% 5-Way PCA: 88%

Application 2: Chemometrics- Analysis of fluorescence
data via PARAFAC[R. Bro, 1997]

Data set:

 \rightarrow 2 chemical samples, each containing different and unknown concentrations of 3 unknown chemical components.

Goal:

 \rightarrow Find which chemical components are present in the samples

Method: fluorescence

 \rightarrow Excitation of the samples with 51 wavelengths (250-300nm)

 \rightarrow Measure of the intensity of emission over 201 wavelengths (250-450nm)

Application 2: Chemometrics- Analysis of fluorescence
data via PARAFAC[R. Bro, 1997]

Data cube \Im (51x201x2): holds the whole set of measured intensities, for the two samples

Fit PARAFAC model with R=3 components

Identification of 3 chemical components with only 2 samples
→ thanks to uniqueness of PARAFAC decomposition

Application 2: Chemometrics- Analysis of fluorescence
data via PARAFAC[R. Bro, 1997]

Results from paper « PARAFAC: tutorial and applications », by Rasmus Bro, 1997

Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

CDMA (« Code Division Multiple Access »)

→ Used in 3rd generation standard (UMTS)

→ Allows users to communicate *simultaneously* in the *same* bandwidth

User 1 wants to transmit $s_1 = [1 - 1 - 1]$.

- → CDMA code allocated to user 1: $c_1 = [1 1 1 1]$.
- \rightarrow User 1 transmits [+ $c_1 c_1 c_1$]

→ User 2 transmits his symbols spread by his own CDMA code c_2 orthogonal to c_1 , etc

Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

Decompose \mathcal{Y} to blindly estimate the transmitted symbols. Which decomposition to use? \rightarrow the one that best reflects the algebraic structure of the data

42

Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

Case 1: single path propagation (no inter-symbol-interference)

« Blind » receiver: uniqueness of PARAFAC does not require prior knowledge of the CDMA codes, neither of pilot sequences to blindly estimate the symbols of all users.

Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

Case 2: Multi-path propagation with inter-symbol-interference but far-field reflections only [De Lathauwer & de Baynast 2003]

 $H_r \rightarrow$ Channel matrix (channel impulse response convolved with CDMA code)

- $S_r \rightarrow$ Symbol matrix, holds the J symbols of interest for user r
- $a_r \rightarrow$ Response of the K antennas to the angle of arrival (steering vector)

Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

Case 3: Multi-path propagation with inter-symbol-interference but reflections not only in the far field [Nion & De Lathauwer 2006]

 $\mathfrak{K}_r \rightarrow$ Channel matrix (channel impulse response convolved with CDMA code) $S_r \rightarrow$ Symbol matrix, holds the J symbols of interest for user r $A_r \rightarrow$ Response of the K antennas to the angles of arrival (steering vectors)

Application 3: Telecommunications - Blind CDMA system via PARAFAC and its generalization

BCD-(L,P,.) with I=12, J=100, L=2, P=2 and 10 random initializations.

Application 4:

Blind Source Separation (instantaneous mixtures)

<u>Goal:</u> estimate the I unknown sources $s_1, ..., s_l$, from the J recordings $m_1, ..., m_J$ only. (« blind source separation (BSS)»)

Application 4:

Blind Source Separation (instantaneous mixtures)

Data Model for linear instantaneous mixtures:

Issues:

- \rightarrow How to find **H** and **S** ?
- → What happens if we have more sources than sensors (I>J) (« under-determined case ») H is fat so not left-pseudo invertible.

→ What about convolutive mixtures (to take reverberations on walls into account)?

Blind Source Separation (instantaneous mixtures)

The SVD of **Y** would give us the subspaces that generate **H** and **S**, but not **H** and **S** themselves \rightarrow We need more assumptions!

<u>Assumption:</u> The I sources are statistically independent

« Independent Component Analysis » (ICA), [Comon, 1994].

rightarrow > ri

 \Rightarrow Use of Second-Order or Higher-Order Statistics (SOS or HOS)

+ Application-specific assumptions to reduce the ambiguity:

- Matrix-Structures (Toeplitz, Van Der Monde,...)
- Finite Alphabet (Symbol constellation), Constant Modulus, etc

Blind Source Separation (instantaneous mixtures)

« Second-Order-Blind-Identification » (SOBI) [Belouchrani et al. 1997]

SOBI relies on simultaneous diagonalization algorithms \rightarrow does not work in under-determined cases (i.e., when **H** is fat)

Blind Source Separation (instantaneous mixtures)

« Second-Order-Blind-Identification of Under-determined mixtures » (SOBIUM) [Castaing & De Lathauwer 2006]

 \rightarrow Lower complexity than SOBI: Tucker compression in mode 3 before fitting the PARAFAC model (K reduced to I) to find **H**

→ Works for under-determined cases (uniqueness of PARAFAC):

Blind Source Separation (convolutive mixtures)

Y=HS → instantaneous mixtures

Multiple reverberations on the walls \rightarrow separation of convolutive mixture

Solve one instantaneous ICA problem for each frequency \rightarrow apply existing ICA techniques for instantaneous mixtures

Blind Source Separation (convolutive mixtures)

« PARAFAC-Based Blind Separation of convolutive speech mixtures » [Nion, Mokios, Sidiropoulos & Potamianos 2008]

After separation stage, the job is really complete after solving:

 \rightarrow arbitrary scaling and permutation of columns of **H**(f) at each frequency

→ Under-determined cases: we can not compute $\mathbf{s}(f,t) = \mathbf{H}^{\dagger}(f)\mathbf{y}(f,t)$

Blind Source Separation (convolutive mixtures)

« PARAFAC-Based Separation of convolutive speech mixtures » [Nion, Mokios, Sidiropoulos & Potamianos 2008]

AUDIO DEMO: http://www.telecom.tuc.gr/~nikos/BSS_Nikos.html

Blind Source Separation (convolutive mixtures)

« PARAFAC-Based Separation of convolutive speech mixtures » [Nion, Mokios, Sidiropoulos & Potamianos 2008]

AUDIO DEMO: http://www.telecom.tuc.gr/~nikos/BSS_Nikos.html

Room Impulse Response (T_{60} =200 ms)

Target localization in MIMO radars

- \rightarrow MIMO radar = emerging technology.
- →Principle: send orthogonal waveforms from different antennas, and capture the waveforms reflected by the targets from different receive antennas.
- → Two classes of MIMO radars: « Widely separated antennas » and « Closely spaced antennas »
- → Exploitation of spatial diversities yields better performance (in terms of target localization, false alarm rate, ...) compared to mono-antenna.

Target localization in MIMO radars

Data Model (after matched filtering by orthogonal transmitted pulses):

Swerling case II target model

« Receive and Transmit steering matrices **B** and **A** are constant over the duration of Q pulses while the target reflection coefficients are varying independently from pulse to pulse».

Purpose: Localize the K targets

Target localization in MIMO radars

$$\mathbf{Y}_{q} = \mathbf{B}(\boldsymbol{\theta}_{r})\boldsymbol{\Sigma}_{q}\mathbf{A}^{\mathsf{T}}(\boldsymbol{\theta}_{t}) + \mathbf{Z}_{q}, \quad q = 1,...,Q$$

« Beamforming-based approach »: Capon estimator [Li and Stoica, 2006]

Find the (transmit, receive) angle pairs where the power $P(\theta_t, \theta_r)$ of the received signal is maximum \rightarrow Compute for all possible pairs

« **PARAFAC-based approach** »: [Nion and Sidiropoulos, 2008]

The received data model follows a deterministic PARAFAC model

 \rightarrow Parametric model, find the angles from the PARAFAC decomposition

Target localization in MIMO radars

Problem: for closely spaced targets, neighboring peaks not distinguishable \rightarrow detection and localization fails

Target localization in MIMO radars

« PARAFAC-Based Localization of multiple targets in MIMO radars» [Nion & Sidiropoulos 2008]

All targets are detected and localized.

Target localization in MIMO radars

PARAFAC vs Capon

Tracking the PARAFAC decomposition

« Adaptive algorithms to track the PARAFAC decomposition »

[Nion & Sidiropoulos 2008]

Tracking the PARAFAC decomposition

« Adaptive algorithms to track the PARAFAC decomposition »

[Nion & Sidiropoulos 2008]

Example 1: MIMO radar

5 moving targets. Estimated trajectories. Comparison between Batch PARAFAC (applied repeatedly) and PARAFAC-RLST (« Recursive Least Squares Tracking »)

Tracking the PARAFAC decomposition

« Adaptive algorithms to track the PARAFAC decomposition »

[Nion & Sidiropoulos 2008]

Adaptive PARAFAC algorithms ~1000 times faster than batch ALS

Tracking the PARAFAC decomposition

« Adaptive algorithms to track the PARAFAC decomposition »

[Nion & Sidiropoulos 2008]

Example 2: BSS

65

Tensor tools more powerful than matrix tools:

- More appropriate to represent and process multivariate signals (one dimension=one variable)

- Uniqueness: estimate raw data and not subspaces only

Tensor tools useful both in deterministic and statistical frameworks:

- Tensor models can represent the algebraic structure of multi-dimensional signals (e.g. CDMA signals received by multiple antennas, MIMO radars)

- Joint-Diagonalization is equivalent to symmetric PARAFAC \rightarrow enjoy the benefit of PARAFAC uniqueness (even in under-determined cases) + low complexity (dimension reduction)

Many applications:

- Source separation (telecom signals, speech signals, defects analysis, ...)
- Multi-Way compression and analysis (Tensor faces)
- Chemometrics

Towards Real-Time Tensor-Based applications:

- Adaptive PARAFAC algorithms very efficient (accurate and low complexity)
- \rightarrow On chip implementation? (e.g. real-time speech separation)
- Adaptive algorithms for Block Decompositions under development

Towards New Uniqueness Bounds

- Uniqueness bounds for Block Decomposition are sufficient \rightarrow find more relaxed bounds

Towards New Tensor Tools

- Develop new tensor-based (application-specific) analysis tools

Towards New Applications

- New/ Emerging applications where multi-variate data have to be represented and processed.

- Existing applications where the tensor structure was ignored until now. 67